
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303515571

Exploring decision-making processes in Python

Conference Paper · June 2016

DOI: 10.1145/2915970.2915993

CITATIONS

16
READS

1,234

3 authors, including:

Sherlock A. Licorish

University of Otago

130 PUBLICATIONS 1,843 CITATIONS

SEE PROFILE

Bastin Tony Roy Savarimuthu

University of Otago

170 PUBLICATIONS 1,731 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sherlock A. Licorish on 31 December 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/303515571_Exploring_decision-making_processes_in_Python?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303515571_Exploring_decision-making_processes_in_Python?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sherlock-Licorish?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sherlock-Licorish?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-Otago?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sherlock-Licorish?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bastin-Tony-Roy-Savarimuthu?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bastin-Tony-Roy-Savarimuthu?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-Otago?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bastin-Tony-Roy-Savarimuthu?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sherlock-Licorish?enrichId=rgreq-7d3ed9eeebd6ffd9e6b08558f88742c4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTU3MTtBUzo1Nzc0NTA2NDE1NjM2NDhAMTUxNDY4NjM2OTkzNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Full citation: Keertipati, S., Licorish, S. A. and Savarimuthu, B. T. R. 2016. Exploring decision-
making processes in Python, in Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering (EASE 2016) (Limerick, Ireland, June 1-3, 2016). ACM, 1-
10. 10.1145/2915970.2915993.

Exploring Decision-Making Processes in Python

Smitha Keertipati, Sherlock A. Licorish, Bastin Tony Roy Savarimuthu
Department of Information Science

University of Otago
PO Box 56, Dunedin 9016, New Zealand

{smitha.keertipati, sherlock.licorish, tony.savarimuthu}@otago.ac.nz

ABSTRACT
The process by which norms are developed to become policies,
the normative decision-making process, is not often explicit to
stakeholders of Open Source Software (OSS) projects.
Understanding the normative decision-making process is crucial
for members if such projects are to evolve and succeed. In this
paper, we investigated aspects of the normative decision-making
processes of OSS development through the use of Python
Enhancement Proposals (PEPs). We compared extracted process
models with those that are advertised by the Python community
to evaluate the extent to which those processes overlap. In
addition, we assess members’ involvement and contribution to
these processes. Our work used structural and behavioral analysis
techniques, and social network analysis metrics. We found that
there were differences between the extracted processes and
Python’s advertised process, with the extracted processes being
significantly more complex. These differences also extended to
granular models used for managing social and technical aspects
of the Python project. Furthermore, some key members were
largely responsible for PEPs’ success. Our extracted models
could go a far way in helping the Python community to quickly
understand decision-making processes in Python.

Keywords
Open source software development; Governance; Norms;
Normative decision-making processes; Developers’ involvement;
Social network analysis; Python enhancement proposals

1. INTRODUCTION
OSS such as Linux (linux.com) and Mozilla Firefox (mozilla.org)
are promising alternatives to Closed Source Software (CSS) as
they offer low-cost, high-quality, and feature-rich solutions [1,2].
Thus, it is important to keep users interested in contributing to
OSS projects. However, new members wanting to join and
contribute to OSS communities may find it difficult to do so
because information on how to join and successfully contribute to
such projects, and how decisions are made regarding new
functionality to be developed, are seldom available. By studying
the process by which decisions are made, we can advance the
current knowledge of how norms are developed and used in OSS
projects, particularly in the governance of software development
processes.
In considering the normative decision-making process, norms are
used to characterize typical or customary behaviors [3]. They are
expectations of behavior in society and can be adopted in a

number of different ways [4]. Norms can emerge formally where
behavioral expectations are explicitly described and implemented
by groups, such as OSS communities [5]. In fact, “a community
is said to have a particular norm, if a behavior is expected of the
individual members of the community and there are approvals
and disapprovals for norm abidance and violations, respectively”
[6]. Researchers have argued that norms are the basis by which
modern socio-technical systems should be governed [7]. Open
Source Software Development (OSSD) is an example of a socio-
technical system [8] where individuals interact socially with
others in the context of software development and also with the
software system (technical system) that is being developed. Thus,
in OSSD, there are two types of norms, social norms1, which
specify the standard practice agreed upon for an issue at hand
(how individuals interact), and technical norms2 which are
related to the functionality of modules (how software is
developed).
Beyond OSSD, norms are important in an organizational setting
since they facilitate and maintain social order [9,10], and reduce
the amount of individual computation [11]. In the context of
OSSD, as norms emerge and become more embedded within an
OSS project they are more likely to influence the development
process of that project [12]. Thus, knowing the normative
decision-making process can allow stakeholders of a project to
make informed decisions regarding development initiatives.
While previous work has investigated what types of norms exist
in OSS through norm mining approaches [5], seldom have the
normative decision-making processes been evaluated. In fact,
OSS advertised processes may not be the same as the processes
that are actually enacted; thus, misleading a community of
members and negatively impacting project productivity.
Knowledge of how norms are actually created, and by which
individuals and groups, could also be useful for OSS
communities in terms of aiding new members that are willing to
assist.
This work has contributed towards the understanding of the
normative decision-making process in OSSD, using Python3 as a
case study. We examine PEPs4, design documents which provide

1 For example, a voting procedure where individuals vote on whether a

new module should be developed (choice indicated using +1), should
not be implemented (using -1), or if they are unsure (using 0).

2 For example, module X must not use the recently deprecated API.
3 https://www.python.org
4 https://www.python.org/dev/peps

http://dx.doi.org/10.1145/2915970.2915993
https://www.python.org/
https://www.python.org/dev/peps

information about new features or processes, in comparing
Python’s extracted processes with those that are advertised by the
Python community. We evaluate the extent to which those
processes overlap, and how members’ contribute to these
processes.
The remaining sections of this paper are structured as follows: we
provide the study background and research questions in Section
2. We present our study setting in Section 3, and results in
Section 4. We then discuss our findings in Section 5, and outline
their implications in Section 6. We consider threats to our
outcomes in Section 7, and finally, provide concluding remarks
in Section 8.

2. BACKGROUND
2.1 OSS Project Governance
A governance model in OSSD aims to provide a social
framework for collaboration based on a set of commonly agreed
practices that brings disparate individuals together towards
achieving a common goal. There are several types of governance
models discussed in OSSD literature [13,14]. One is the
benevolent dictatorship model, which is a hierarchy-based
system where a benevolent dictator makes the final decisions and
acts as a facilitator between various stakeholders. The dictator
could be either permanent or can be changed on a rotation basis
(called the rotating dictatorship model). An example of a
benevolent permanent dictator is Linus Torvalds of the Linux
kernel project [15]. Perl is said to employ the rotating
dictatorship model [16], though Larry Wall is sometimes
assessed as a benevolent dictator. Another model is the
meritocracy model, which is based on the pure merits of those
contributing to the project, allowing them to work their way up
and gain more responsibilities. This model is used by the Apache
Software Foundation [17]. Exploring these models of governance
could provide insights into the normative decision-making
processes in OSS.
Our observations of the well-known OSS projects such as Linux5
and Eclipse6, show that the process of how decisions are made
regarding new functionality to be developed (i.e., technical
norms) and the social processes (i.e., social norms) surrounding
the development of software are not made public by these
projects. Though data is available for these OSS projects, there
are gaps in the data such as lack of details about who did what
(i.e., who made what decision), and when. The data that is
available for Python, however, does not contain any gaps7. For
this reason, we have selected Python as our case study. In
addition, the Python community makes the prescribed process
very clear and publicly available. We pursue two directions in
our investigation of Python as considered in the remaining
subsections: (1) normative decision-making processes, and (2)
developers’ involvement in the normative decision-making
process.

2.2 Decision-Making in OSS
Our first objective in this work is to determine whether the
extracted decision-making process is compliant with the
prescribed decision-making process, in the context of PEPs. By
decision-making processes, we are referring to the processes by
which decisions are made. Our work here relates to the literature

5http://www.linuxfoundation.org/content/how-participate-linux-

community
6 http://eclipse.org/eclipse/development/
7 In terms of the authors, the states, etc., of PEPs from when they are first

proposed to their end state.

on decision theory [18,19], which has two main branches,
normative decision theory, which studies how decisions should
be made, and descriptive decision theory, which studies how
decisions are actually made. This work provides direct evidence
on whether discrepancies exist in the real-world between ‘should
be’ and ‘as is’ decision-making processes in a new context (i.e.,
the decision-making processes in OSS, as evident in
repositories). In this paper we investigate the difference between
normative decision-making (i.e., the prescribed processes) and
descriptive decision-making (i.e., the extracted processes).
The process of decision-making in organizations, where the
stakes are considerable and the impact is widespread, is
complicated and very important [20]. Decision-making plays an
important role in the functioning of an organization [21], where
individual, groups, teams and committees must work together to
deliver solutions [22]. There are many benefits of group decision-
making, including the availability of more knowledge and
expertise to solve the problem at hand, the exploration of a
greater number of alternative solutions, better understanding and
acceptance of the final decision by all group members, and more
commitment among all group members to make the final decision
work [23]. However, there are also many downsides to group
decision-making, including groupthink [24] and group
polarization [25].
While other work has investigated what types of norms exist in
OSS through norm mining approaches [5], seldom have the
normative decision-making processes been studied. In this work,
we study these processes using data obtained from the Python
repository in answering the first research question:
RQ1. Do Python extracted decision-making processes comply
with their advertised decision-making process?

2.3 Developers’ Involvement
Our second objective is to extract knowledge about how norms
are actually created, and by which individuals and groups. In
achieving this objective we aim to compare differences in
developers’ involvement in the normative decision-making
process to identify individuals and groups that are more
influential than others in creating decision-making processes.
Studies have considered the involvement of software developers
in group decision-making and team dynamics. Crowston et al.
[26] examined the work of the developers of five small OSS
projects and found that the core groups of developers comprised
only a small number of those contributing to the projects. The
related study by Crowston and Howison [27] found some OSS
projects to be highly centralized (with just a few members
communicating), and this pattern was especially pronounced for
smaller projects. Additionally, it was revealed that most OSS
projects had a hierarchical social structure [27]. Licorish and
MacDonell [28] studied team dynamics by investigating how the
contribution of members in global software development affected
their teams’ knowledge diffusion process, and how their
personality profiles related to their dominant presence. While
also observing few members to dominate group work, they found
that the members who exhibited more openness to experience,
agreeableness, and extroversion were more inclined to be the
influential members of their teams. Their prior work also
progressed that of Crowston and Howison [27], by examining the
true role of core members, finding that they contribute towards
both social and task-related aspects during development [29].
These works show that regardless of the OSS project, few
members tend to occupy the core of team interactions. Given the
three models that are typically observed in OSS projects (c.f.,
benevolent dictatorship, rotating dictatorship and meritocracy),

http://www.linuxfoundation.org/content/how-participate-linux-community
http://www.linuxfoundation.org/content/how-participate-linux-community
http://eclipse.org/eclipse/development/

we are interested in understanding if this central/core pattern also
exists in the shaping of team norms and proposals.
Given the pattern above for core members, and particularly, its
replication in multiple OSS projects [26,27], we anticipate that a
specific group of members may shape team norms (and decision-
making) in such an environment. To this end, new members
joining an OSS project may benefit from coming into contact
with these individuals. Although several other works have
studied developers’ involvement in the decision-making process
(e.g., [29]), previous work did not consider members’
involvement in normative decision-making processes. We answer
our second research question in addressing the above objective:
RQ2. Who are the most influential and successful Python
decision-makers?

3. STUDY SETTING
As noted above, we examine PEPs taken from the Python
repository. A total of 363 proposals were extracted covering three
forms of PEPs, Process, Informational, and Standards Track. The
basic details of the PEP include the PEP id, title (description of
what the PEP is about), authors, status (draft, accepted, finalized
etc.), type (Process, Informational, Standard Track), creation date
and modification history.
To investigate processes compliance (RQ1), a data-driven bottom
up approach was used in order to extract the normative decision-
making processes from these publicly available Python artifacts.
These processes were extracted by using process mining
techniques [30]. Process mining is used for Business Activity
Monitoring (BAM) and Business (Process) Intelligence (BPI)
[31]. It aims at extracting processes within an organization based
on logs available in different forms such as process execution
logs (e.g., event logs, state logs) that capture who did what, and
when, in a particular context (e.g., handling an insurance claim).
Our data for inferring the decision-making process was sourced
from the publicly archived versions of the PEP document files as
they underwent changes over a period of time (starting with the
creation of the first PEP on 13th June 2000, to 31st December
2014). Extracting the knowledge from PEP document files
involved a number of steps. The PEP diff files8 for all the PEP
commits were first retrieved from the GitHub repository9 (step
1). Thereafter, in step 2 the status changes in each diff file were
extracted by parsing regular expressions. The new status had the
pattern “+status: X”, where the text that follows the colon (X in
this case) is the state (or event). In step 3 the status changes of all
versions of all the PEPs were recorded and stored as event logs.
Sample event logs are shown in Table 1; for example, PEP 20110
was initially drafted, then accepted, and then finalized. In the
fourth step the process mining tool Disco11 was used to construct
process diagrams from the imported log files. These diagrams
used Simple Precedence Diagram (SPD) notation [32]. In step 5
we analyzed our results and computed frequency, proportions,
and percentage difference, which was followed by formal
statistical analysis. Finally, these results were then interpreted.

8 A diff file shows the difference between two text files. For example, a

newly created PEP document might be in the draft state. After
discussions, the status might be changed to the active state. The diff file
in this case will highlight that there was a change in status (i.e., from
draft to active).

9 https://github.com/python/PEPs
10 https://www.python.org/dev/peps/pep-0201/
11 https://fluxicon.com/disco/

To answer the second research question (RQ2), we employed
social network analysis techniques, using PEPs authors’
contribution information and modification history. We outline
our specific measures in the following two subsections.

Table 1. Sample event logs corresponding to various PEPs
PEP id PEP type Event-Transition log
2 Process Draft-Deferred-Draft-Active-Final

160 Informational Incomplete-Complete-Finished-
Final

201 Standards Track Draft-Accepted-Final

3.1 Measuring Compliance (RQ1)
As noted above, we used the process mining tool Disco to
produce SPDs. Disco allowed us to automatically create smart
flow diagrams (or process maps) of processes using event logs.
Using Disco, we produced four SPDs, one for each of (1) the
overall extracted process, (2) the extracted process for Process
PEPs, (3) the extracted process for Informational PEPs, and (4)
the extracted process for Standards Track PEPs. We then
manually assessed a sample of these outputs for accuracy, which
confirmed that the tool functioned correctly. When creating these
SPDs, we considered only those PEPs that were initially
proposed after October 29, 2005, as the prescribed process model
was made publicly available by the Python community12 at this
time. We measured process compliance by comparing the
extracted processes against the prescribed process. We examined
the differences between the extracted process for all PEPs and the
extracted process for each of the three types of PEPs (Process,
Informational and Standards). Comparisons were done using two
types of analyses, structural analysis, which aims at comparing
the structures of processes using comparative structural analysis
to study differences in structures (e.g., if a network diagram has 5
nodes and 4 links connecting the nodes, and another diagram has
7 nodes and 3 links; comparing the number of nodes and the links
between the nodes in the diagrams constitutes structural
analysis), and behavioral analysis, which aims at investigating
the patterns of behavior as exhibited by process instances (i.e.,
the process models) [34].
While structural analysis compares static structures, behavioral
analysis focuses on the dynamic aspects. Behavioral analysis
facilitates the identification of key elements in the process model
(e.g., nodes, pathways or loops), based on the data from all
process instances. To study the dynamic behavior, we conducted
frequency analysis (i.e., we studied the number of times a
particular node or state was visited in order to see what nodes
were visited most frequently). We also examined the completion
times of PEPs traversing different pathways.
Comparative structural analysis as used in this work is an
approach widely used in biology and chemistry to compare and
analyze structures of two or more entities such as viruses and
enzymes [33]. It is also used in the business process management
community to compare the structures of business processes [34].
As mentioned above, this type of analysis allows us to study the
differences in the structures of processes. In computing such
differences domain specific metrics or heuristics such as SPDs
have been widely used. The normative decision-making process
models in our approach have also been created using SPDs [32],
a variant of precedence networks [35], which are commonly used
in project scheduling, an important aspect in project
management. We used these techniques in our evaluation of

12 https://github.com/python/peps/blob/master/pep-0001-1.png

https://github.com/python/PEPs
https://www.python.org/dev/peps/pep-0201/
https://fluxicon.com/disco/
https://github.com/python/peps/blob/master/pep-0001-1.png

compliance. Our outcomes from these analyses are provided in
Section 4.1.

3.2 Measuring Involvement (RQ2)
We used social network analysis (SNA) to model developers’
involvement in the normative decision-making process, in the
context of PEPs. Social network analysis allows us to understand
specific workflows, as well as the specific types of individuals
and the roles they play in the decision-making process and
successful development of PEPs [28,38]. We investigated the
roles of individual authors, such as those who are involved in the
managing of the Python project or those who are involved in
contributing and writing code. The roles of these individuals can
range from being the primary contributor of a PEP proposal to
revising a PEP proposal that has been proposed by another
individual or group of authors. We used NodeXL13, a free open
source network analysis and visualization software package to
visualize the network of Python authors, in providing preliminary
understanding of members’ involvement.
In large graphs, such as the network of Python authors, graph
clustering analysis provides a utility for meaningful scientific
data analysis [36]. This technique divides graphs into groups,
called clusters, whose vertices are highly connected inside each
cluster. By using graph clustering, we can discover the structures
and representative examples present in the raw graph data. Using
NodeXL, we thus cluster Python members based on their
participation on PEPs using Clauset-Newman-Moore (CNM)
algorithm [37]. We used the CNM algorithm as it is a greedy
modularity-based14 algorithm, which obtains a modularity gain
after merging a pair of nodes, and uses nested heap structures of
modularity gain for all pairs of nodes. It iteratively selects and
merges the best pair of nodes, which has the largest modularity
gain, from the heap until no pairs improve the modularity
[36,37]. This process allowed us to measure members’ influence
in the network.
We further studied the influence of certain individuals by looking
at their degree centrality measure. Network centrality is used in
the analysis of structural characteristics of social networks, and
can determine the relative importance of nodes in a network [38].
This measure was fittingly used here as it allowed us to model
the number of links a node has to other nodes [28], in further
probing influence. We used the degree centrality measure to
identify the individuals who have contributed to the most number
of PEPs. We assessed successful members based on the degree to
which the PEPs they were involved with reached the final state.
Given that the direction of contribution was not relevant in this
study we used undirected graphs. The results for this aspect of
our analyses are presented in Section 4.2.

4. RESULTS
In this section, we discuss the results for the two research
questions presented in Sections 2.2 and 2.3. We present our
findings on normative decision-making process compliance in the
context of PEPs, and show that there are indeed differences
between the extracted normative decision-making processes and
the advertised (or prescribed) normative decision-making process
(RQ1). We next present our findings on developers’ involvement
in the normative decision-making process, and show that there
are individuals and groups who are more influential and
successful in Python decision-making than others (RQ2).

13 http://nodexl.codeplex.com/
14 Modularity evaluates the density of edges within clusters as compared

to edges between clusters. Higher modularity scores result in better
clustering results.

4.1 Process Compliance (RQ1)
First, we provide evidence to determine the extent to which the
overall extracted process for PEPs is compliant with the
advertised process. This comparison allows us to answer RQ1;
however, we go one step further in conducting additional
analyses aimed at understanding the PEP processes. We
investigate whether there are differences between the normative
decision-making processes of the three types of PEPs, Process,
Informational, and Standards Track. Thereafter, we compare the
pathways and completion times of PEPs. Given that our analysis
was performed on PEPs proposed after October 29, 2005, our
dataset for this phase of analysis comprised 190 PEPs. Overall,
there were a total of 33 Process, 45 Informational, and 285
Standards Track PEPs (363 altogether). By considering only
those PEPs proposed after the date mentioned, our new dataset
comprised 18, 21, and 151 PEPs respectively (and 190 in total).
As noted above, we considered a successful PEP to be one whose
end state was final, and a failed (or unsuccessful) PEP to be one
whose end state was either rejected or withdrawn.
Extracted versus Prescribed Process
The overall extracted process model for PEPs is shown in Figure
1. The numbers in the boxes (or states) indicate the number of
times that specific state was visited (e.g., the state final was
visited 95 times). Also, the numbers beside the arrows indicate
the number of times that specific transition (i.e., from one state to
another) occurred (e.g., the transition draftactive occurred 8
times). Finally, the thickness of the arrows indicates their weight
on a log scale (e.g., the transition draftaccepted occurred 83
times, and the most, so it has the thickest arrow between the two
states).
The prescribed process model is shown in Figure 2. This is the
model that Python developers have made available to the
community as the one that is being followed during PEP
development (refer to: python.org/dev/peps/pep-0001). Looking
at Figure 2, it can be seen that there are differences between this
model and the extracted process model, as the extracted process
captures aspects that are missing in the prescribed process. The
extracted process model appears to be more complex than the
prescribed process model. It not only contains more nodes (i.e.,
approved, finished, and superseded) than the prescribed process
(with a percentage difference of 31.6%), but the extracted process
also contains more pathways (120% difference). This comparison
is shown in Table 2. The higher number of nodes and pathways
in the extracted process indicates that there are more paths that a
proposed change to the Python language can take before it
reaches its end state, than the ones prescribed by the Python
community. There are also many loops (9 loops as shown in
Table 2, with a percentage difference of 160%) that can be seen
in the extracted process (for example, the pathway
finaldraftfinal), between pairs of states. This differs from the
prescribed process which shows only one possible loop (i.e., the
loop between draft and deferred). It can also be seen in Figure 1
that once a PEP has moved to the next state (i.e., from final to
deferred), it can go back and forth between these states or any
combination of two states (e.g.,
draftdeferreddraftactivefinal). This is not represented in
the prescribed process in Figure 2. Also, the purpose of the
dashed arrows in the prescribed process is unclear as neither of
these transitions (i.e., acceptedrejected and finalreplaced)
appear in the extracted process. Overall, comparing Figures 1 and
2, there are several differences in the visual representations of the
two processes. The prescribed process appears to be only a
simplified model of the inferred decision-making process.

http://nodexl.codeplex.com/

We formally tested the metric with the least percentage
difference in Table 2 (i.e., nodes) to see if these differences were
statistically significant. We anticipated that if there were
statistically significant differences in the measures for prescribed
and extracted nodes, then a similar pattern of result would obtain
for prescribed and extracted pathways and loops (given the 120%
and 160% divergence for these metrics, compared to just 31.6%

for nodes in Table 2). We first evaluated normality. Our
standardized Skewness and Kurtosis coefficients were both
within the boundaries of normally distributed data (i.e., -3 to +3).
Thus, the parametric independent sample t-test was conducted to
test the mean nodes for significant differences, which revealed
statistically significant difference (p < 0.01).

 Figure 1. The overall extracted process model for PEPs

Figure 2. The prescribed process model for PEPs

Table 2. Number of nodes, pathways and loops for prescribed
and extracted processes for PEPs

 Prescribed
process

Extracted
process

Percentage
difference

Nodes 8 11 31.6
Pathways 9 36 120
Loops 1 9 160

We next constructed the process models (i.e., the extracted
processes) for the three individual types of PEPs in comparing
these to the overall extracted process (Figure 1). In the overall
extracted model (Figure 1), it is shown that there are some nodes
that are visited more frequently than others (e.g., draft). This is
consistent in the extracted models for Process PEPs (shown in
Figure 3), Informational PEPs (shown in Figure 4), and Standards
Tracks PEPs (shown in Figure 5). In the overall extracted process
model, there are also some pathways that are taken more
frequently than others (e.g., draftacceptedfinal). This is the
same for Standards Track PEPs. However, this is different for

Process and Informational PEPs as the most frequent pathway for
both of these types of PEPs is draftactivefinal. Though they
are not the same, these two pathways are very similar as they
have the same start node (i.e., draft) and end node (i.e., final).

Figure 3. The extracted process model for Process PEPs

Looking at Figure 4, we can also see that no Informational PEPs
that reach the accepted state have ever reached the final state.
That said, structurally, the overall extracted process is more like
the model for Standards Track PEPs, than the models for the
Process and Informational PEPs. This comparison can be seen in
Table 3. In terms of the number of nodes, pathways, and loops,
the overall extracted process and the extracted process for
Standards Track PEPs are similar, while the extracted process for
Process PEPs and the extracted process for Informational PEPs
are similar to each other. One reason for this may be that Process
and Informational PEPs relate to the social aspects of Python
(e.g., deciding how to vote for a module), while Standards Track
PEPs relate to the technical aspects (e.g., deciding on a
technology for implementation).

Figure 4. The extracted process model for Informational

PEPs

Figure 5. The extracted process model for Standards Track PEPs

Table 3. Number of nodes, pathways and loops for the overall
extracted process and the extracted processes for the three

types of PEPs

 Process
PEPs

Informational
PEPs

Standards
Track
PEPs

Overall
extracted
process

Nodes 6 6 10 11
Pathways 10 10 27 36
Loops 1 1 7 9

Unique Pathways and Completion Times
We next examined the frequency of the unique pathways of all
PEPs, which revealed that some pathways were taken (or visited)
more frequently than others. However, most of the pathways
were taken only once or twice, especially the ones that go
through multiple states (e.g., draftrejectedwithdrawn). The
top three pathways that were widely used are

draftacceptedfinal (with a count of 76), draftrejected (a
count of 60), and draftfinal (a count of 47). The pathways that
were taken more frequently appear to consist of similar states or
nodes, such as draft, while the pathways that are taken less
frequently possess the incomplete and withdrawn nodes.
We compare the completion time of pathways resulting in a
negative outcome (i.e., the end state being rejected or withdrawn)
and the pathways resulting in a positive outcome (i.e., the end
state being final) in Figure 6. Here it is shown that pathways
resulting in a negative outcome take, on average, more time than
pathways resulting in a positive outcome (ignoring the outliers in
both the negative and positive outcome pathways). Formal
statistical testing confirmed (t-test result) statistically significant
difference (p < 0.01), suggesting that perhaps negative outcome
PEPs needed to be revised more thoroughly before a final
decision was made. In examining such outcomes for the
individual PEPs, we observed that two of the pathways (i.e.,

draftaccepted and draftdeferred), reach completion faster in
Process PEPs than in Informational or Standards Track PEPs.
Similarly, two more of the pathways (i.e., activefinal and
draftactivefinal) reach their end state faster in Standards
Track PEPs than they did for the other two types of PEPs. It was
also observed that one pathway (i.e., draftfinal) had a shorter
mean completion time in Informational PEPs than in Process or
Standards Track PEPs. These observations can arise for a number
of reasons, including the fact that these pathways are more
frequent in one type of PEP than in the others. This would affect
the average time taken for that pathway in one of the three types
of PEPs. This is true for the draftactivefinal and
draftdeferred pathways for Process and Standards Track PEPs,
respectively.

Figure 6. Average time taken for negative (i.e., rejected,

withdrawn) and positive outcomes (i.e., final)

4.2 Members’ Involvement (RQ2)
Altogether, we identified 142 unique authors (or contributors); 46
authors were involved in Process and Informational PEPs (i.e.,
the social aspects of Python), while the majority of developers
(133 authors) were involved in Standards Track PEPs (i.e., the
technical aspects). In fact, some authors who were involved in
Standards Track PEPs were also involved in Process and
Informational PEPs. There were three authors who were only
involved in Process PEPs, and six authors who were only
involved in Informational PEPs. We also identified nine authors
who were involved in all three types of PEPs.
In investigating influential authors in the Python community we
visualized and clustered all the authors into groups using the
CNM clustering algorithm [37]. Figure 7 reveals eight clusters of
membership, with the bottom right cluster comprising only two
members. These members made very little contribution to the
PEPs. We have thus focused on the seven densely connected
clusters here in our results. We observe that in each of these
seven clusters, there was an individual who stood out, or played
the hub (or core member). Further analysis revealed that five of
these seven authors were involved in all three types of PEPs. To
determine the extent to which these seven individuals were
influential, we identified the total number of PEPs they were
involved in (i.e., contributed to). These results are shown in
Table 4. Here it is shown that C1 (Guido van Rossum) was the
most influential individual. He contributed to the most number of
PEPs (95 out of 363 PEPs in total). This is not surprising as he is
the original creator of, and the final design authority for the
Python programming language. Other significant contributors to
PEPs were C2, C3, C4, and C6. These members are also
occupying central position in the network in Figure 7. We

observe that C1, C3, C6, and C8 are indeed PEP editors, and so
their pronounced presence is fitting. PEP editors are individuals
who are responsible for managing the administrative and editorial
aspects of the PEP workflow (e.g., assigning PEP numbers and
changing their status).

Figure 7. CNM cluster of Python members

Table 4. Degrees centrality of Python seven key members
Author Degree centrality
C1 95
C2 75
C3 73
C4 33
C6 30
C8 23
C13 11

For the seven individuals identified as most influential in the
network by the CNM clustering algorithm (shown in Figure 7),
we found the number of successful and unsuccessful PEPs each
individual was involved in (i.e., contributed towards), as either
the primary contributor15 or a secondary contributor16. We also
calculated the proportion of success for each individual. These
results are shown in Table 5. Here it is observed that, though C1
had the highest number of successful PEPs, his proportion of
success is relatively low (i.e., just over 50%) when compared to
that of the others. The individual with the highest proportion of
success is C8 (with 17 successful PEPs out of 23 PEPs in total).
This does not necessarily indicate that C8 is the most influential
individual in terms of success. To get a more accurate picture we
further examined the outcomes for only the top three authors in
terms of the number of PEPs they have been involved in, C1, C3,
and C2, and found that C3 had the highest proportion of success
(with 46 successful PEPs out of 73 PEPs in total), followed by

15 A primary contributor is characterized as the first author (i.e., initially

proposed the PEP), the only author involved in the PEP, the author who
contributed the most to the PEP, or any combination of these.

16 A secondary contributor is characterized as an author who joined the
PEP at a later stage, and does not fit the criteria of a primary
contributor.

C1 (51 out of 95), and then C2 (34 out of 75). We considered
only these three authors as they were involved in a relatively
similar number of PEPs. Overall, C4 was the only author, out of
the seven, who was involved in more unsuccessful PEPs (with a
count of 18 out of 33) than successful PEPs (count of 13).

Table 5. Key members’ presence on successful and
unsuccessful PEPs

Author Successful
PEPs

Unsuccessful
PEPs

Proportion of
Success17

C1 51 30 0.54
C3 46 13 0.63
C2 34 12 0.45
C8 17 3 0.74
C6 17 11 0.57
C4 13 18 0.39
C13 7 1 0.64

5. DISCUSSION
We revisit our research questions in this section. We first analyze
our outcomes in answering RQ1 in Section 5.1, before
considering our results in answering RQ2 in Section 5.2.

5.1 Process Compliance (RQ1)
RQ1. Do Python extracted decision-making processes comply
with their advertised decision-making process? Our results
confirmed that there were divergence in the extracted normative
decision-making processes and the prescribed normative
decision-making process as publicized by the Python community.
We observed that these differences also existed at a more
granular level, for the different types of python enhancement
proposals. Thus, in the Python project there is a difference
between “as-is” versus “should-be”, when considering
decision-making processes. One potential reason for this is that
it is extremely difficult to capture software development
decision-making processes, and present them in a simple and
accurate representation [2]. This is because there would be
several decision-making processes involved in the software
development process that are not succinctly specified at project
conception, owing to the evolving nature of the software
development process [39]. Such processes would tend to change
depending on the realities of the software ecosystem. Thus,
capturing such processes fully would require that the processes
are documented in a way that there are no gaps in the
information. Therein lays the opportunity for mechanisms to then
update process models without human intervention. Automated
tools could aid this process, and may be particularly necessary for
OSS environment where individuals volunteer [1], and may find
little incentive in recreating decision-making models. That said,
such models are necessary as the divergence noted could have
implication for the performance of those involved in the
community, whose expectation could be violated in this context.
Such violations could lead to frustration and members quitting a
software project. In addition, delays may also result in members
having to verify those incorrect processes that are publicized.
Furthermore, new members wanting to contribute may find it
difficult to do so.
Our outcomes here advance those that previously assess the types
of norms that are prevalent in OSS projects [5]. In fact,
investigating the prescribed versus extracted (or enacted) process
is important, not only for OSS project contributors, but also for

17 Computed by dividing members’ successful PEPs by the total PEPs

they were involved in (i.e., contributed to); e.g., 51/95=0.54 for C1.

the project management or team leadership to comprehend the
complexity of the real process (i.e., extracted process) and the
dissonance between the extracted and prescribed processes.
Insights from such validations would be beneficial for both OSS
and CSS environments, in informing process (re)engineering
activities.
We observed several paths that a proposed change to the Python
language can take before it reaches its end state. Notwithstanding
differences in the number of observations in Section 4, we also
noticed that Process and Informational PEPs (those related to the
social aspects of Python) differed to those of a Standards track
PEPs (technical aspects). This evidence may indicate that PEPs
governing technical aspects of Python possessed much more
complexity than social aspects, which were agreed upon much
sooner. So, for example, ‘agreements on a proposal around how
long members of a technical review team should take to respond
to a newly integrated software function’ (a social aspect) was
reached much faster say than a ‘proposal specifying the actual
platform to be used for executing builds’ (a technical aspect).
This pattern is fitting, as previous work noted that such
(technical) mechanisms aimed at automating repetitive tasks,
while being more demanding in the beginning, reduce the need
for collaboration at a later stage [11]. That said, socio-technical
systems (and social and technical norms) need effective
governance if software projects are to succeed [7].
We observed that PEPs that had a positive outcome had a smaller
lifecycle than those that had a negative outcome (or, were
rejected). We believe that rejection only came after critical
review, and hence, the process was delayed. In fact, such
rejection would need justification. It is interesting to observe
such patterns in an OSS context, where it is believed that ad hoc
processes are enacted. Our observation here suggests however
that Python had a strong steering committee, notwithstanding the
divergence in extracted and prescribed processes. We examine
the workings of these important members further in the next
subsection.

5.2 Members’ Involvement (RQ2)
RQ2. Who are the most influential and successful Python
decision-makers? Our results in the previous section established
that specific individuals (and group) are more involved in the
development of PEPs than others. We have previously observed
this pattern when studying actual code changes and
communication logs, where a specific subset of developers
tended to dominate [28,29]. Here we see a similar pattern for the
normative decision-making processes, where seven members
were extremely pronounced in the clusters noted. In fact, these
members tended to also operate as bridges to other clusters or
groups.

Looking at the wider space of evidence, Crowston and Howison
[27] found that most OSS projects had a hierarchical social
structure, consistent with our investigation of Python as we also
noted the core developers’ syndrome. Crowston et al. [26]
examined the work of the developers of five small OSS projects
and also found that core groups of developers comprised only a
small number of those contributing to the projects. These core
developers are said to be the elite contributors. In the current
study such members were overseen by Guido van Rossum (C1).
This confirmation of previous evidence seems to suggest that,
OSS projects activities are driven by core groups, with others
supporting these members, regardless of the actual task being
performed (i.e., whether planning and scoping policies or
coding software functionalities).

We also observed that some individuals involved in the
development of PEPs were more influential to their success than
others. That said, we are cautious that the success of these
authors can vary based on the different types of PEPs; whether
Process, Informational, and Standards Track. Such differences
may also be influenced by the complexity and size of the PEPs.
Thus, to get a more accurate picture of the results presented here,
we plan to take these additional factors into consideration. In
fact, we found that different members were involved in different
forms of PEPs, although, there were also some levels of overlap
in membership. This suggests that the OSS community attracts
different types of people (i.e., people involved in the structuring
of the social aspects of software development (Process and
Informational PEPs), and people who are more technical-minded
(Standards Track PEPs). Previous work has indeed promoted this
notion, where it is suggested that a balancing of roles are
necessary for projects to succeed. Social, task driven and critique
roles were also shown to exist among IBM Jazz practitioners
[40]. While we did not study this issue as such, we observed in
this study that members tended to cut across the social and
technical lines, with less performing both roles. These, and the
other findings above, have implication for practice and theory.
We consider this issue next.

6. IMPLICATIONS
We consider the implications of our findings for practice and
theory in this section. In terms of practice, we observed that there
were divergence in the extracted normative decision-making
processes and the prescribed normative decision-making process
as publicized by the Python community. There were also
differences in the processes for different forms of PEPs, Process,
Informational, and Standards Track. Based on these findings,
perhaps the Python community should make the updated
processes available to the community. In addition, a mechanism
to update these processes should they change may also ensure
currency. Such an approach may be automated to reduce the
burden on team members. We anticipate that updated processes
would benefit new members wanting to join and contribute to the
OSS community, as well as existing members, as they would
have a clear understanding of the decision-making processes that
are involved in the creation of PEPs. Efforts aimed at keeping
normative decision-making processes current may also return
similar benefits to other OSS or CSS projects.
We observed that PEPs governing technical aspects of Python
possessed much more complexity than social aspects, which were
agreed upon much sooner. Python members should plan for these
delays. These members may also preempt rejection should there
be delays in the approval of PEPs. We observed that specific
individuals (and group) were more involved in the development
of PEPs than others. Generally, knowing who the most influential
individuals in decision-making processes are could be beneficial
for those needing help. Beyond general advice, such key
members may even offer recommendations on the potential of
proposals succeeding, or may inform the design and setup of
proposals. We also noticed that specific members were involved
in different forms of PEPs, although, there were some levels of
overlap in membership. Accordingly, leveraging these members’
specific strength could go a far way in Python’s project
governance.
In terms of the implication for theory, our work may be extended
to other successful OSS projects such as Linux and Eclipse to
evaluate if the patterns noted here would be replicated for these
projects. Replicating this pattern would inform guidelines that
may serve more generally for OSS projects. In fact, studying the
normative decision-making process of other successful OSS

projects in the GitHub repository could also inform such a
knowledge base. We also anticipate that considering factors other
than developers’ contribution to PEPs and the number of
successful PEPs they were involved in (e.g., the type of PEP, the
size and complexity of the PEP, and the number of authors
involved in the PEP), could provide fruitful extensions of the
work that is performed here. We also plan to validate our
findings with the Python community.

7. THREATS
Our work has studied artifacts of only one OSS project, which
limits its generalizability. In addition, our data was gathered from
a single source (i.e., the GitHub repository of Python), potentially
limiting our observations, and particularly when considering
members’ involvement. Developers may engage about PEPs in
other mediums such as mailing lists, blogs, and discussion boards
where richer details about members’ involvement in the
normative decision-making processes is likely to be present. That
said, given our replication of patterns found previously [26-29],
we believe that our outcomes may apply to other OSS contexts.
Finally, we did not consider factors such as the type and size of
the PEP individuals were involved in during this study, which
may have also impacted the pattern of results noted.

8. CONCLUSION
OSS solutions have over the years delivered noteworthy
alternatives to those offered by CSS, in terms of providing low-
cost, high-quality, and feature-rich systems. Thus, it is pertinent
to understand the mechanisms that are likely to keep such
projects going. In contributing towards this cause we explored
the normative decision-making process in OSSD, using Python’s
PEPs as a case study. In addition, we assess members’
involvement and contribution to these processes. Among our
findings, we observed that the advertised process for creating
PEPs is incomplete. In addition, divergence also exists at a more
granular level in terms of different types of PEPs (Process,
Informational, and Standards Track). Furthermore, we observed
that PEPs governing technical aspects of Python took longer to
be agreed upon than social aspects. We observed that specific
individuals (and group) were more influential and successful in
the development of PEPs than others. Based on these findings we
propose that the Python community should make the updated
processes available to the community. In addition, a mechanism
to update these processes should they change may also ensure
currency. Python members should plan for PEP delays; and
furthermore, we anticipate that influential individuals would hold
key insights into the decision-making processes, which could be
beneficial for those needing help.

9. REFERENCES
[1] Crowston, K., Wei, K., Howison, J., and Wiggins, A.,

Free/Libre Open-Source Software Development: What We
Know and What We Do Not Know. ACM Computing
Surveys, 44, 2 (2012).

[2] Fitzgerald, B., Open Source Software Adoption: Anatomy
of Success and Failure. International Journal of Open Source
Software & Processes, 1, 1 (2011), 1-23.

[3] Stroll, A., Norms. Dialectica, 41, 1, (1987), 7-22.
[4] Ullmann-Margalit, E., The Emergence of Norms. OUP

Catalogue (2015).
[5] Dam, H. K., Savarimuthu, B. T. R., Avery, D., and Ghose,

A., Mining Software Repositories for Social Norms. In 37th
ICSE (Florence, Italy, 2015), IEEE, 627-630.

[6] Savarimuthu, B. T. R., and Dam, H. K., Towards Mining
Norms in Open Source Software Repositories. in Agents and
Data Mining Interaction. Springer Berlin Heidelberg (2014),
26-39.

[7] Singh, M. P., Norms as a Basis for Governing
Sociotechnical Systems. ACM Trans. on Intel. Sys.& Tech.,
5, 1 (2013), 21.

[8] Baxter, G., and Sommerville, I., Socio-Technical Systems:
From Design Methods to Systems Engineering. Interacting
with Computers, 23, 1 (2011), 4-17.

[9] Andrighetto, G., Villatoro. D., and Conte, R., Norm
Dynamics Within the Mind. in Computational Social
Sciences. Springer International Publishing Switzerland
(2014), 141-160.

[10] Axelrod, R., An Evolutionary Approach to Norms.
American Political Science Review, 80, 4 (1986), 1095–
1111.

[11] Epstein, J. M., Learning to Be Thoughtless: Social Norms
and Individual Computation. Computational Economics, 18,
1 (2001), 9-24.

[12] Conley, C. A., and Sproull, L., Design for Quality: The
Case of Open Source Software Development. Ph.D
Dissertation. New York University, Grad. Sch. of Bus.
Admin. (2008).

[13] Jensen, C., and Scacchi, W., Modeling Recruitment and
Role Migration Processes in OSSD Projects. ProSim05,
(2005), 39.

[14] Jensen, C., and Scacchi, W., Governance in Open Source
Software Development Projects: A Comparative Multi-
Level Analysis. Open Source Software: New Horizons.
Springer Berlin Heidelberg (2010), 130-142.

[15] Murray, P., Governance in Open Source Software Projects.
Lyrass, Available from:
http://web.archive.org/web/20111007034152/http://www.lyr
asis.org/Resources/Articles/Governance-in-Open-Source-
Software-Projects.aspx

[16] Ljungberg, J., Open Source Movements as a Model for
Organising. European Journal of Information Systems, 9, 4
(2000), 208-216.

[17] The Apache Software Foundation., How the ASF Works.
(2011), Available from:
http://web.archive.org/web/20111006032712/http://www.ap
ache.org/foundation/how-it-works.html

[18] Hansson, S. O., Decision Theory: A Brief Introduction.
Department of Philosophy and the History of Technology,
Royal Institute of Technology (KTH), Stockholm (1994).

[19] Rapoport, A., Problems of Normative and Descriptive
Decision Theories. Mathematical Social Sciences, 27, 1
(1994), 31-47.

[20] Greenberg, J. Behavior in Organizations. Upper Saddle
River, NJ: Prentice Hall, 2011.

[21] Mintzberg, H. The Nature of Managerial Work. Harper and
Row, New York, 1973.

[22] Bonito, J. Interaction and Influence in Small Group
Decision Making. New York, NY: Routledge, 2012.

[23] Schermerhorn, J. R., Hunt, J. G., and Osborn, R. N.,
Organizational Behavior. New York, NY: Wiley, 2011.

[24] Janis, I. L., Groupthink and Group Dynamics: A Social
Psychological Analysis of Defective Policy Decisions.
Policy Studies Journal, 2, 1 (1973), 19-25.

[25] Bordley, R. F., A Bayesian Model of Group Polarization.
Organizational Behavior and Human Performance, 32
(1983), 262-274.

[26] Crowston, K., Wei, K., Li, Q., Howison, J., Core and
Periphery in Free/Libre and Open Source Software Team
Communications. In 39th HICSS (Hawaii, USA, 2006),
IEEE, 118.1.

[27] Crowston, K., and Howison, J., Hierarchy and
Centralization in Free and Open Source Software Team
Communications. Knowledge, Technology & Policy, 18, 4
(2006), 65–85.

[28] Licorish, S. A., and MacDonell, S. G., Communication and
Personality Profiles of Global Software Developers.
Information and Science Technology, 64 (2015), 113-131.

[29] Licorish, S. A. and MacDonell, S. G., The true role of active
communicators: an empirical study of Jazz core developers.
In 17th EASE2013 (Porto de Galinhas, Brazil, 2013). ACM,
228-239.

[30] van der Aalst, W. Process Mining: Discovery, Conformance
and Enhancement of Business Processes. Springer Berlin
Heidelberg, 2011.

[31] van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H.,
Weijters, A., and van der Aalst, W. M., The ProM
Framework: A New Era in Process Mining Tool Support.
Applications and Theory of Petri Nets, Springer (2005),
444-454.

[32] van Dongen, B. F., and Adriansyah, A., Process Mining:
Fuzzy Clustering and Performance Visualization. Business
Process Management Workshops, Springer-Verlag Berlin
Heidelberg (2010), 158-169.

[33] Eisenberg, R., de Leon, M. P., and Cohen, G., Comparative
Structural Analysis of Glycoprotein Gd of Herpes Simplex
Virus Types 1 and 2. Journal of Virology, 35, 2 (1980), 428-
435.

[34] Liu, Y., Muller, S., and Xu, Ke., A Static Compliance-
Checking Framework for Business Process Models. IBM
Systems Journal, 46, 2 (2007), 335-361.

[35] Burman, P. J. Precedence Networks for Project Planning and
Control. London: McGraw-Hill, 1972.

[36] Shiokawa, H., Fujiwara, Y., and Onizuka, M., Fast
Algorithm for Modularity-Based Graph Clustering. In 27th
AAAI (Bellevue, Washington, 2013), AAAI Digital Library,
1170-1176.

[37] Clauset, A, Newman, M. E., Moore, C., Finding Community
Structure in very Large Networks. Physical Review, 70, 6
(2014).

[38] Sabidussi, G., The Centrality of a Graph. Psychometrika, 31,
4 (1966), 581-603.

[39] Licorish, S. A., Philpott, A. and MacDonell, S. G.
Supporting agile team composition: A prototype tool for
identifying personality (In)compatibilities. In ICSE CHASE
2009, (Vancouver, Canada, 2009). IEEE Computer Society,
66-73.

[40] Licorish, S. A. and MacDonell, S. G. Self-organising Roles
in Agile Globally Distributed Teams. In 24th ACIS 2013,
(Melbourne, Australia, 2013). ACIS, 1-11.

View publication stats

https://www.researchgate.net/publication/303515571

	1. INTRODUCTION
	2. BACKGROUND
	2.1 OSS Project Governance
	2.2 Decision-Making in OSS
	2.3 Developers’ Involvement

	3. STUDY SETTING
	3.1 Measuring Compliance (RQ1)
	3.2 Measuring Involvement (RQ2)

	4. RESULTS
	4.1 Process Compliance (RQ1)
	4.2 Members’ Involvement (RQ2)

	5. DISCUSSION
	5.1 Process Compliance (RQ1)
	5.2 Members’ Involvement (RQ2)

	6. Implications
	7. THREATS
	8. CONCLUSION
	9. REFERENCES

