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ABSTRACT
Open Source Software Development (OSSD) often suffers
from conflicting views and actions due to the perceived flat
and open ecology of an open source community. This often
manifests itself as a lack of codified knowledge that is easily
accessible for community members. How decisions are made
and expectations of a software system are often described
in detail through the many forms of social communications
that take place within a community. These social inter-
actions form norms which are influential in dictating what
behaviors are expected in a community and of the system.
In this paper, we provide a tool which mines these social
interactions (in the form of bug reports) and extract norms
of the system, externalizing this information into a codified
form that allows others within the community to be aware
of without having witnessed the social interactions.

1. INTRODUCTION
Norms are rules or standards that govern communities and

societies [5]. Norms develop over time through social inter-
actions between individuals in societies, and also through
reactions and perceptions to others’ actions. The large ma-
jority of norms take the form of tacit knowledge, propagating
from one actor to another through socialization and witness-
ing the sanction of a norm being applied. Norms dictate
what behavior is desired, prohibited or expected within the
community, often applying a sanction on those who do not
abide by them.

Open Source Software Development (OSSD) communities
can be viewed as socio-technical systems [33]. OSSD allows
developers to integrate with non-technical members to form
a broader, more transparent community. Like all social sys-
tems, they too, are governed by norms [35]. However, due
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to the decentralized control and egalitarian nature of open
source communities, norms develop more organically, ap-
pearing slowly over time and are a product of social inter-
actions within the community [11].

Problems can arise during development when an actor un-
knowingly violates the expectations of the system (such as
implementing undesired functionality to the system) or the
expectation of a development procedure or practice (such
as not commenting code). This can lead to inconsistency
within the system and propagation of bad practices [42] to
those who have witnessed the violation and perceived it as
correct. Yet decisions are made at a rapid pace through
the various means of communication (such as mailing lists,
code comments and bug reports). Hence, it is difficult for an
actor to remain educated to a complete set of expectations
[23]. These expectations take the form of norms [35].

In this work, we propose a tool to remedy this situation
called Norms Miner. Our tool mines textual communica-
tions within a community, and extracts the norm placed on
an actor or system. The norm is also classified in regards
to its deontic context: obligation, prohibition, or requesting
for a norm that does not currently exist. In doing so, Norms
Miner effectively codifies expectations placed on the system
and community through social interactions, and makes avail-
able these expectations to those who did not witness the
interaction take place.

In OSSD, bug trackers or bug databases such as Bugzilla
are used to discuss and track defects of the project. This
makes bug reports an ideal data source to discover norms
due to the social nature of a bug report; in terms of reporting
a defective behavior for peer review (i.e. a behavior that is
violating an expectation and therefore should be reported).
Additionally, due to the corrective intent of a bug report;
describing behavior that is undesirable and also corrective
behavior to remedy the bug, further increases the effective-
ness of bug reports as a data source. OSSD bug trackers can
also be used to report, discuss and track feature requests or
patch/policy discussion [20]. This can be interpreted as de-
sired expectations that currently do not exist (i.e. future
norms).

While norms of the community can be extracted, in our
results we find a large majority of the extracted norms are
norms of the system (for reasons discussed in Section 6).
While both forms are treated as norms, community norms
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govern how the community should interact with one another.
System norms govern how the system should interact with
actors, akin to a system requirement. Viewing these expec-
tation of the system as norms allows to view these crowd
source system norms under a social theory context.

There are several advantages of an automated tool that
is able to capture implicit norms of an OSSD community
by continually mining both past and incoming social inter-
actions between community members. First, as discussed
in Krogh et al. [42], joining an OSSD can be a long and
difficult process partially due to the challenge of becoming
informed and aware of the communities and systems prac-
tices, procedures and behaviors without any formal means
to do so. By extracting and presenting norms to prospective
members, joining a community can become more accessible
and less challenging. Tacit knowledge of the communities
behavior can be more easily transferred to the prospective
member through externalization provided by Norms Miner,
which would otherwise have had to be sought out and in-
terpreted manually. This allows for a more agile turnover of
community members.

The classification of extracted norms can also provide sta-
tistical information that can be used to estimate the health
of the community and system. For example, a recent surge
in norms extracted as a violation of a prohibition can indi-
cate that the current work is being done incorrectly. A high
number of norms extracted as a violation of an obligation
can indicate that current work is not meeting the desired
effect. Similarly, a high number in future obligations can
indicate current work is not meeting stakeholder needs.

Lastly, externalizing norms in a continuous style to com-
munity members can increase their agility, responsiveness,
consistency and awareness due to the conversion of the tacit
knowledge to explicit, codified knowledge. Norms will no
longer rely on socialization as their primary means of prop-
agation [11] but instead can be broadcast to the entire com-
munity.

The contributions of this paper are:

• An automated tool that can be used for mining natural
language contained in textual social interactions of a
bug report to discover, extract and classify norms.

• A taxonomy for classifying norms found in bug reports
under deontic modality and a technique for classifica-
tion.

• Evaluations over the tool, reporting a recall of 0.74,
precision of 0.73 and f-measure of 0.73 in classifying
norms.

The paper is organized as follows. Section 2 discusses the
background and related work. Section 3 presents the run-
ning example, which is referred to throughout the paper.
Section 4 describes the approach used for extracting norms.
Section 5 presents the evaluations of our framework. Section
6 details the discussion of results, presenting our interpreta-
tions and possible impacts. Section 7 presents future work
and concludes the work presented.

2. BACKGROUND AND RELATED WORK
Norms are expected behaviors an individual should adhere

to, when interacting within a society or community. Norms
are fundamental to understanding the social structure of so-
cieties and communities [38]. Norms are an active area of

research in a variety of fields, including sociology [13], law
[12], economics [27] and computer science [34] [43]. Due
to this wide field of applicability that norms are subjected
to, a multitude of definitions exist for norms. Habermas
[18] defines a norm as “fulfilling a generalized expectation of
behavior”. This definition of a norm is widely accepted in
research, thus, we apply to this definition in our work.

In the field of law and contracts, extraction is often de-
rived from a semantic understanding of the language used in
the document to detect normative language; often utilizing
(Natural Language Processing (NLP) and Information Re-
trieval (IR) techniques to identify and extract the norm [21]
[15]. Work in the field of agents detect norms by observ-
ing the social interactions of agents [2] [32]. By monitoring
how an agent responds to another agents behavior, infer-
ences can be made about the norms governing the behavior
observed. For example; an agent a1 ∈ A exhibits behavior
b1 and soon afterwards an∃A of surrounding agents start ex-
hibiting a behavior b2 that negatively impacts the utility of
a1. We can infer that b1 was a violation of a norm and that
the surrounding agents an enforced a sanction b2 unto a1

due to this violation. With adequate sensors and historical
records, multiple occurrences of this inference can provide
evidence that 6 b1 is a norm and that b2 is associated and not
an outlier.

In our work, we prescribe to the first technique, relying
on semantic understanding for extraction rather than social
observances. This is due to the type of data available such as
bug reports that can be semantically modeled albeit not as
structured as is the case in the Law and Contract domains.

There have been several categorizations of norms proposed
by researchers (cf.[31]). We believe that deontic norms - the
norms describing prohibitions, obligations and permissions
studied by the NorMAS community [26] is an appropriate
categorization for norms that may be present in OSSD com-
munities.

• Obligation norms are behaviors or actions that com-
munity members or the system are expected to be per-
formed or abided. Failing to meet this expectation,
may incur a sanction against the offender. For exam-
ple, members in OSSD are often expected to follow a
coding convention, failure to adhere to this obligation
may result in the violating code being rejected by the
community.

• Prohibition norms are behaviors or actions that have
been deemed unacceptable or should be avoided; they
should not be performed within the community. How-
ever, when these actions are performed, a sanction may
be applied to the offending community member or sys-
tem. A system storing passwords in plain text is an
example of a prohibition norm.

• Permission norms describe the permissions provided
to the system or community members (e.g. actions
they can perform). For example, a user playing the
role of the project manager is permitted to create code
branches or forks.

A norm extracted as an obligation will be received and
acted on entirely differently as opposed to the same norm
being extracted as a prohibition. For example, the norm
“use only capital letters when writing bug reports” does not
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entail if community members should abide by this behavior
or avoid exhibiting it. By applying a deontic classification
over the norm, in this case a prohibition, it becomes clear
that the community should avoid exhibiting this behavior,
making the norm a prohibition norm.

Social structure, such as norms, are regarded as a major
contributing factor to the challenges faced by a prospective
developer interested in joining an OSSD project. Duche-
neaut [11] analyzes the process of joining an OSSD, com-
menting on how a prospective developer utilizes bug report-
ing, documenting and patching to gain exposure to the com-
munities social structure, before using this exposure to as-
similate into the community. This is further confirmed in
work by Krogh et al. [42] who provide a case study of join-
ing an OSSD community.

In previous work by Savarimuthu and Dam [33] the gap
existing in mining norms from OSSD repositories is iden-
tified. They explore the motivations, potential issues and
impacts surrounding this area of research while also present-
ing a high level agent based architecture for mining norms
in OSSD repositories. Considering the current challenges
of big data, they conclude that a systematic approach to
mining and understanding norms will assist in bridging the
gap between social research and computer science, provid-
ing deeper insights into big data. Thus, the work presented
in this paper is a continuation of the preliminary work con-
ducted, adopting the motivations and discussions presented
previously.

This work is extended in Dam et al. [8] where empirical
evidence is shown of the life cycle of a norm in an OSSD
project while also tracking norm compliance, noting the
large discrepancy between adopted conventions and what
has actually been carried out within the projects develop-
ment creating an alignment problem. This work motivates
the need for a data driven method of capturing what actors
are doing in practicality (via extraction of norms) to vali-
date or assess against what they are formally expected to be
doing (via official documentation).

Breaux et al. [4] utilizes normative phrases in regulation
texts to provide alignment of requirements to regulations
in health care systems. By exacting rights and obligations
from healthcare regulations text, they are able to validate
that regulations have been fulfilled by requirements while
also handling exceptions and identifying ambiguity. This
work highlights how norms discovered from background in-
formation can be used as requirements in software engineer-
ing. Applying this concept, Norms Miner could be extended
to not just present norms of the system but also to feed
these norms back into requirements, facilitating support for
regulation validation and requirement verification.

Sorbo et al. [37] present a tool for classifying the intent
of sentences within software development mailing lists. By
training ad-hoc heuristics for capturing typed dependency
patterns over a pool of sample communications, they are
able to effectively classify the intent of sentences into one
of five categories such as “feature request” or “solution pro-
posal”with a precision of 0.90% and a recall of 0.70%. While
intent is closely related to expectations; a main contribution
in our work is the identification and extraction of expecta-
tions (norms), and not solely classification.

Our approach to norm extraction is most similar to Gao
and Singh [15] who detail a framework for extracting norma-
tive relationships from business contracts. Extracting and

Figure 1: The initial bug report of the running ex-
ample

classifying norms from natural language, normative relations
take the form of commitments, prohibitions, authorizations,
powers and sanctions, where a subject applies a consequence
over an object with an optional antecedence acting as a
guard. While sharing the same overall general approach, our
work differs in intent; mining norms from software reposito-
ries as opposed to normative relations between actors. Our
work considers noisy and ill-structured bug reports while
theirs is on well-structured documents.

3. RUNNING EXAMPLE
Throughout this paper, an example is utilized to track

how a norm is extracted from a sample bug report (seen in
Fig. 1). The example will follow the reporting of an obser-
vation made by an actor; in this case, an incorrect behavior
of the system, and how such a report can be used to extract
information about an expectation of the system in the form
of a norm.

Through human interpretation, it can be seen that the
sentence “If the <filtersfile file=”” /> is changed, ant should
regenerate new copies”describes expected behavior from Ant.
Specifically, the actor ant, is obligated to perform the action
generate to the item new copies. This is guarded by the con-
dition If the <filtersfile file=”” /> is changed:, which must
be true for this behavior to be an obligation of the system.

Extracted as a subject-predicate-object-antecedent quadru-
plet; “ant” is the subject, “generate” is the predicate, “new
copies” is the object and “If the <filtersfile file=”” /> is
changed”: is the antecedent. The norm extracted is a cur-
rent obligation the system has to its users.

4. APPROACH
The approach consists of five steps as shown in the Norm

Miner framework presented in Figure 2. These are 1) Pre-
Processing of bug reports, 2) Identifying a candidate sen-
tence for norm extraction from a bug report, 3) Applying
the feature vector to the candidate sentence, 4) Extraction
of the norm from the candidate sentence and 5) Classifica-

225225225

Authorized licensed use limited to: University of Otago. Downloaded on August 07,2024 at 04:29:03 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2: An overview of the framework

tion of the extracted norm. Each stage is elaborated in more
detail in the following sub-sections.

4.1 Pre-processing
The first step involves inputting bug reports and preparing

the bug report for natural language processing. The ma-
jority of preprocessing is done through Stanford’s Natural
Language Processing tool [25], which was used to tokenise a
sentence into words, identify part-of-speech (POS) tag, split
sentences and parse the title and description fields. XML
fields are also purged from the report.

4.2 Identifying the Candidate Sentence
Bug reports generally only report on a single violation

or a single feature request. This is due to the commonly
adopted bug reporting principle of “One bug per report”
as seen in Bugzilla bug writing guidelines1. Accordingly, we
consider bug reports to have, at most, a single norm inclusive
of this violation or request. Norms are considered to exist
at the sentence level [15] for extraction purposes. As a bug
report can consist of multiple sentences, a challenge is faced
in identifying which sentence is most inclusive of the intent
of the bug report and also postulates a currently unknown
norm. To overcome this challenge, a set of heuristics are
used to identify which sentence is used for the extraction of
a potential norm. We refer to this sentence as the candidate
sentence.

Due to variations in culture, traditions and norms of each
community [7], the reporting of a bug is affected by these
variations. For example, one community may strictly adhere
to a reporting template while another community may heav-
ily use specific jargons. This makes generalizing heuristics to
identify the candidate sentence difficult. Thus, heuristics are
created ad-hoc through manual observations using grounded
theory [17] on a sample set (training set) of the community
being mined. Guiding this process are three categories that
are essential for the identification of the candidate sentence.
These categories are listed with an example of the heuristics
used on the Ant data set.

1. Expressiveness heuristics - they help make sure that
the candidate sentence is expressive of the bug reports
intent

e1 Sentences that are lexically similar to the bug re-
ports title are preferred.

e2 Longer sentences are preferred over shorter sen-
tences.

1https://landfill.bugzilla.org/bugzilla-4.4-branch/page.cgi?
id=bug-writing.html

Table 1: The candidate sentence of the running ex-
ample

Sentence Number: 1
Sentence: If the <filtersfile file=”” /> is changed, ant
should regenerate new copies.
e1 The sentence has a high cosine score with the title.
e2 The sentence is considered short.
e3 The sentence occurs earlier.
e4 The sentence contains the modal verb “should”.
e6 the sentence contains the negative starter “if”.

e3 Sentences that occur earlier in the bug report are
preferred to those that are towards the bug re-
ports end.

2. Positivity heuristics - they help in positively identify-
ing that a candidate sentence contains a norm

e4 Sentences with modal verbs2 are preferred. Ex-
amples of modal verbs are must, should and can.

e5 Sentences with domain specific verbs that imply
expectation and are not modal verbs are preferred.
These words include get, produces and run.

3. Exclusiveness heuristics - they help in removing sen-
tences that are not relevant

e6 Sentences that start with a “negative starter” are
less preferred.

e7 Sentences that contain words that imply how to
replicate the bug or how to fix the bug are less
preferred. These words include replicate, example
and fix.

e8 Sentences that contain evidence of code, stack
traces, XML, etc. are less preferred.

These heuristics are applied to every sentence within the
bug report in order to derive a weighted value for each sen-
tence. The highest weighed sentence is selected as the candi-
date sentence. Table 1 shows the selected candidate sentence
for the running example (Section 3). Even though various
heuristics such as e2 and e6 weigh against the sentence as a
candidate sentence, other heuristics, in this case e1, e3 and
e4, help to overcome this deficit to make the sentence the
highest weighted sentence in the bug report, thus making
it the candidate sentence. It is important to note that the
candidate sentence does not yet imply a norm. Rather, it
potentially contains a norm. The formula used to derive a
sentences weight is available on-line3.

Heuristics such as e1, e2 and e3 aim to ensure the candi-
date sentence is expressive of the bug report’s intent. The
similarity measure in e1 is determined by a cosine [30] value
between the sentence and the title of the bug report. Ob-
servations made over the data indicate the title of a bug
report is usually highly descriptive of a bug reports intent.
Thus, lexically similar sentences are also highly descriptive
of a bug reports intent. e2 favors sentences of at least 90
characters or more in length. This is to ensure that the
sentence can sufficiently describe a normative behavior and
to avoid e1 heavily preferring short similar sentences when

2Modal verbs express modality of a governing verb.
3http://www.uow.edu.au/˜da488/data.html
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the title of the bug report is also short and possibly uses
generic words. A bug report’s intent is best represented in
the first half of the bug report, as the report often describes
the problem before detailing how to replicate or pose poten-
tial remedies in the latter half of the report. Accordingly,
e3 prefers sentences that occur in the first half of the bug
report.

Heuristics such as e4 and e5 aim to ensure the candidate
sentence contains a norm. Modal verbs are used to express
modality of a sentence (i.e. should, must, shall), entailing
the deontic nature of a norm [6]. This is indicative of the
sentence containing normative behavior. Modal verbs are
detected through the use of Stanford NLP Part-of-Speech
(POS) tagger. e5 aims to capture sentences that indicate
they fulfill some expectation (in this way e5 is similar to e4)
that was not expressed using modality. For example, the
sentence ”calling foo() gets me the input” contains no modal
verb yet describes an expectation of what should happen
when foo() is called. Detection of sentences that contain
these words is achieved via regular expressions.

Heuristics such as e6, e7 and e8 aim to remove sentences
that could potentially be a candidate sentence but are con-
textualized or phrased in such a way that undermines the
validity of the potential norm. As stated previously, the
norm we ideally wish to extract is inclusive of the bug re-
port’s intent expressed as an expectation. Thus, potential
norms that exist in code fragments e8 should be disfavored.
Sentences that do not pertain to describing the bug report’s
intent, such as sentences that explain how to fix or replicate
a bug e7, should also be disfavored as we aim to capture
what was violated (the intent of the report). Similarly to
e7, e6 aims to disfavor a sentence that does not describe the
bug report’s intent by detecting what we refer to as “neg-
ative starters”. Keywords at the start of a sentence can
contextualize the remainder of the sentence. For example,
by using the word “can” at the start of the sentence, implies
that the sentence is posing a question rather than a state-
ment. Norms detected in such a sentence risk their validity
as they tend to be a question rather than a declaration. Ex-
amples of negative starters include “but”, “how” and “can”.
All three heuristics are detected by regular expressions.

4.3 Applying the Feature Vector
The next step involves applying the candidate sentence

with features that are used during the classification process.
All but one feature are applied to a candidate sentence by
identifying words or patterns in the sentence that share a
strong semantic relationship with the feature. For exam-
ple; the words must, should and need all imply a notion of
a strong4 expectation, and thus are grouped under such a
feature. These features are binary and are applied as either
true for an occurrence of the feature or false for no occur-
rence having been detected.

Similarly to how the previous heuristics were derived, words
and patterns are assigned to features through a process of
manual observation and grounded theory [17] across. How-
ever, due to these features acting as a semantic source cod-
ing, they offer good generalization across different open source
communities. Detection of these words and patterns is achieved
via regular expressions. Upon detection of a word or pat-
tern, the owning feature is applied to the sentence.

4Strong expectation refers to an expectation more strictly
committed to than a weak expectation

Table 2: List of features and sample words
Feature Example
Tense NLP extracted
Negation not, doesn’t, won’t
Strong expectation must, need, should
Weak expectation could, would, might
Desire good, better, convenient
Reported behavior gets, returns, generates
Faults hanged, crashed, exception
Missing ignore, no longer, absent
Unexpected however, strangely, rather
Modification add, change, update
Support provide, allow, improve

Figure 3: Tag annotation of candidate sentence

Features were selected with the intention to capture se-
mantic distinctions that can clearly separate the meaning of
a sentence into a single classification (detailed below). For
instance, the feature desire is decisive in separating an ob-
ligated behavior from a prohibited behavior, and vice-versa
for the feature faults.

The tense feature differs from this process in that it uses a
natural language parser to detect the outermost verb phase
before applying Part-of-Speech (POS) tags over the phrase
to determine the primary tense of a sentence. The tense
feature is recorded as either past/present or future tense.
A complete list of features as-well as sample words used to
detected them are listed in Table 2.

In the case of the running example (Section 3), the candi-
date sentence contains the following features: past/present
for the tense feature, and a true value for modification and
strong expectation as seen in Fig. 3.

4.4 Classification
Bug trackers are commonly used for requesting new re-

quirements [20], accordingly, norm categories are split tem-
porally, describing current violations of norms (norms in the
system) and also requested norms (norms that are proposed
to be added in the future). As a bug report describes a vio-
lation of correct behavior of the system, we consider norms
extracted in the past and present tense as a violation of
a norm. Following the deontic classification of norms de-
scribed in Section 2, the following taxonomy for classifica-
tion is proposed:

VO Violation of an existing obligation - These are norms
that have been reported for not meeting expected be-
haviors, practices, principles and functionality. For ex-
ample; a build engine unable to read a build script is
considered to be a violation of an obligation.

VP Violation of an existing prohibition - These are norms
that have been reported as they perform what has been
deemed unacceptable within the community. An ex-
ample of a VP is code causing a null pointer error.
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Table 3: The norm extracted from the motivating
example

Bug Id: 39934
Sentence: If the <filtersfile file=”” /> is changed, ant
should regenerate new copies.
Classification: Violation of an obligation
Subject: ant
Predicate: should regenerate
Object: new copies
Antecedent: If the < f iltersfile file=”” /> is changed

FO Future expectation of an obligation - Are potential obli-
gation norms that currently do not exist but could ex-
ist in the future. They are expected behaviors, prac-
tices, principles or functionality proposed by commu-
nity members with the intention of the norm becoming
accepted and applied to the community. An example
of an FO is a member suggesting a new reporting for-
mat for unit tests.

FP Future expectation of a prohibition - Are potential pro-
hibition norms that currently do not exist but could
exist in the future. They are proposed behaviors, prac-
tices, principles or functionality that should be deemed
unacceptable or avoided within the community. An ex-
ample of an FP is suggesting a coding module to be
depreciated.

The results from the training process described in Sec-
tion 5.2. Note that the deontic concept of permission was
excluded as a class since bug reports usually contain infor-
mation on what should (obligation) and should not happen
(prohibition). Discussion of what is allowed to happen (per-
missions) was rarely observed.

Classification occurs as a supervised multi-class statisti-
cal classification utilizing the feature vector of the candi-
date sentence and a sample set trained with grounded truth
values to provide a statistical history to the classifier. Clas-
sification of a candidate sentence is applied before the norm
is extracted due to the extraction process potentially losing
contextualized information (as is the case in Table 4) needed
to classify the potential norm. If a norm is successfully ex-
tracted from a candidate sentence, the sentence’s classifica-
tion is applied to the norm.

The running example (Section 3) was classified as a VO.
This is due to containing the past/present feature which
strongly correlates to VO and VP, as well as containing the
feature of strong expectation which strongly correlates to
VO and FO.

4.5 Extraction
Norms are extracted from candidate sentences as a subject-

predicate-object5 triplet with a possible antecedent express-
ing the pre-condition that must be met in order for the norm
extracted to be relevant. This allows extracted norms to be
expressed in a constituent word order, building a clear de-
scription of a norm as a subject applying a predicate over
an object. To this end, typed dependencies provided by the
Stanford Parser [9] are used, along with an automated pro-
cess inspired by Rusu et al. [29] and Gao et al. [15] work,
in the extraction of the triplet.

5Also known as subject-verb-object

Table 4: A sample norm extracted
Bug Id: 38458
Sentence: Unfortunately, some code in Task.java as-
sumes that project is not null and can throw NullPoint-
erExceptions.
Classification: Violation of a prohibition
Subject: some code in Task.java
Predicate: can throw
Object: NullPointerExceptions
Antecedent: N/A

Subject: The subject is located by performing a breadth
first search over the typed dependencies of the sentence,
searching for a nominal subject relation (nsubj). During
this search, various modifiers such as an adverbial clause
modifier (advcl) are pruned to ensure the subject remains in
the independent clause and not a subordinate or dependent
clause. Once a nominal subject relation is found, the de-
pendent of this relationship and all of its dependencies are
extracted as the norm’s subject.

Predicate: The predicate of the sentence is extracted by
conducting a breadth first search for either a modal verb or a
domain specific verb (used in e3) over a constituency-based
parse tree. Once found the parent verb phase of the found
verb is used as the norm’s predicate.

Object: Similar to the extraction of a subject, the ex-
traction of an object is achieved by performing a breadth
first search over typed dependency relation, searching for a
direct object (dobj) relation while pruning various modifiers
such as an adverbial clause modifier (advcl). Once located,
the dependent of this relationship and all of its dependencies
are extracted as the object of the norm.

Antecedent: The antecedent is extracted by performing
a breadth first search for various modifiers, such as an adver-
bial clause modifier (advcl) that imply a dependent or sub-
ordinate clause. The obtained clauses are then checked to
ensure it contains conditional keywords such as“if”, “unless”,
“provided”, etc. before being extracted as the antecedent of
the norm.

The extracted norm from the running example (Section
3) is seen in Table 3. The subject applies an action (the
predicate) over an object which can optionally be guarded
by an antecedent to form a norm. The classification of the
candidate sentence that was used in deriving this norm is
then applied to the norm in order to add context to it. In
the case of the motivating example which was classified as a
VO, it can be seen that the norm extracted is an obligation
norm of the system as it is violation was reported as a bug.
Similarly, the norm extracted in Table 4 was classified as a
VP, thus the norm extracted is a prohibition norm of the
system.

5. RESULTS AND EVALUATIONS
In evaluating the approach used, the following research

questions are investigated.

R1 Can text from social interactions within a community be
mined for norms about the systems expected behavior?
This research question aims to evaluate the core con-
tribution of this work. Extracting norms of system
behavior in an explicit form.
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Table 5: The Data set

Project Reports
Valid
Reports

Norms Sentences

Ant 200 178 162 1735
Eclipse 100 94 64 814
Total 300 272 226 2549

R2 Can mined norms be classified effectively into deontic
concepts?
This research question aims to explore if a deontic clas-
sification of extracted norms is reasonable, effective
and applicable.

R3 Can rules and heuristics used in mining norms from one
community be generalized for mining Norms within an-
other?
This research question aims to explore if data trained
on from one community can be generalized or is appli-
cable to another.

5.1 The Data
For these experiments, 200 bug reports that had the closed

status were randomly selected from Apache Ant bug database6

and 100 from Eclipse Platform7. Reports that were consid-
ered spam8 or contained purely code/logs/exception mes-
sage9 were removed, leaving a total of 178 bug reports for
Apache Ant and 94 for Eclipse Platform.

While at most, only a single extraction occurs per report,
the miner is tasked with assessing every sentence when se-
lecting one for extraction, thus 1735 sentences are mined for
Apache Ant and 814 for Eclipse Platform.

5.2 Experiment Design
Three sets of reports were then manually examined and

annotated. One set by the authors, referred to as the de-
velopment set and two sets by two independent evaluators
(one person per set), refereed to as the truth set. In an effort
to remove bias, the independent evaluators were external to
this work and have not been involved in its development.
Evaluators worked in isolation from each other during an-
notation and were only assisted by the authors in questions
regarding to language and grammar.

Annotating a report consists of examining every sentence
within a bug reports description, identifying if it contains a
norm and if so what class does it belong to (as outlined in
Section 4.4) or an N/A classification if the norm did not fit
into any possible class. Lastly, each sentence identified to
contain a norm was ranked in terms of its relevance. Rel-
evance was defined as “a sentence that is more descriptive
of the intent of the report”. The interpretation of the in-
tent of a report was decided by the evaluator. In order to
maintain consistency among the evaluators, sentences were
determined and split by Stanford NLP “WordToSentence”
annotator with the setting of property “newlineIsSentence-
Break” property set to two. Treating the occurrence of two

6http://ant.apache.org/bugs.html
7https://bugs.eclipse.org/bugs/
8https://issues.apache.org/bugzilla/show bug.cgi?id=
29960
9https://issues.apache.org/bugzilla/show bug.cgi?id=
53291

consecutive newlines as a sentence break. as-well as its nor-
mal sentence splitting.

Once annotation was complete, only the highest ranked
sentence of each report along with the classification is used
in constructing a combined truth set from each evaluator’s
truth set. Inconstancies in sentence rankings or sentence
classification was resolved by a unanimous decision by both
evaluators after discussing amongst each other. Once both
sets are consistent they form the ground truth set used in
evaluating the various stages of the miner. The final out-
come was 162 norms extracted from Apache Ant and 64
norms extracted from Eclipse Platform as detailed in Table
5.

In answering R1 we identify three critical areas that must
be evaluated to determined the effectiveness of mining norms
from social text. These are: 1) identifying the candidate sen-
tence, 2) classification of norms, and 3) extraction of norms.
Furthermore, two independent communities are used to as-
sess the robustness and resilience of the miner. In answering
R2, statistical results from evaluation of the classification
step will be reported on. In answering R3, heuristics made
for and data trained on the Apache Ant project, will be uti-
lized in testing on the Eclipse Platform set, breaking down
what is and is not effective.

5.3 Identifying the Candidate Sentence
In evaluating the effectiveness of the candidate sentence

selection step for R1, we use traditional relevance measures
with the ground truth set serving as truth values. The
heuristics for identifying the candidate sentence for Apache
Ant project (presented in Section 4.2) was developed and
refined from examining 20 randomly selected reports from
the development set of Ant. The identical reports were also
removed from the ground truth set. The remaining 158 re-
ports containing 1561 sentences for Apache Ant were used
in evaluation. As only one candidate sentence is selected per
report, upon a selection (a positive prediction), all remain-
ing sentences are treated as a false prediction. Due to this
precept, type one and type two errors are treated as iden-
tical. For Apache ant, the heuristics were able to identify
the candidate sentence with a precision, recall and F-score
of 0.83.

In assessing if heuristics that were tuned to Apache Ant
is generalizable to Eclipse Platform as per R3, the heuristics
for Apache Ant was applied to Eclipse Platform in order
to identify the candidate sentence. The results of a preci-
sion, recall and F-score of 0.45 clearly indicate that such a
generalization was not possible due to the heterogeneity of
reporting styles between OSSD communities.

5.4 Classification
To evaluate the classification step of R2, ten-fold cross-

validation of the ground truth set with three different clas-
sification techniques were used. These techniques are Naive
Bayes classifier [14], Support Vector Machine (SVM) [3] and
C4.5 [28] and are commonly applied in classifying text within
a bug report [1, 22, 40]. The Weka tool suit [19] is used,
along with the ground truth set to classify the candidate
sentence. As features are based in semantics, they do not
need to be specifically tuned to a project, unlike the heuris-
tics for selecting a candidate sentence. However, features
were created and refined, based on performance measures
using the Apache Ant development set as the truth set.
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Table 6: Weighted averages of the three classifiers
Classifier Recall Precision F-score ROC

Apache Ant
Naive Bayes 0.742 0.733 0.736 0.859
SVM 0.708 0.705 0.703 0.775
C4.5 0.680 0.674 0.674 0.785

Eclipse Platform
Naive Bayes 0.436 0.414 0.390 0.635
SVM 0.362 0.207 0.248 0.489
C4.5 0.415 0.379 0.386 0.534

Table 7: Detailed results of Naive Bayes classifica-
tion
Class Freq. Recall Precision F-score ROC

Apache Ant
VO 50 0.647 0.717 0.680 0.825
VP 69 0.797 0.724 0.759 0.851
FO 56 0.786 0.786 0.786 0.913
FP 2 0 0 0 0.489
Avg. 0.742 0.733 0.736 0.859

Eclipse Platform
VO 30 0.167 0.417 0.238 0.563
VP 37 0.757 0.438 0.554 0.683
FO 23 0.348 0.444 0.390 0.722
FP 4 0 0 0 0.233
Avg. 0.436 0.414 0.390 0.635

As features were constructed and refined from a process
of grounded theory used on bug reports from Apache Ant
(including reports not used in the evaluated data set), we
evaluate the classification step by utilizing an independent
project (Eclipse Platform), that was not utilized in the for-
mation of features. This is to infer, if features and classes
are generalizable to other projects as per R3.

We note that the evaluation of this step is conducted, af-
ter the candidate sentence has been selected by the miner
and not in isolation (i.e. only correct candidate sentences
are classified), as R1 aims to evaluate the process in its en-
tity and not in separate components. Thus, an incorrectly
selected candidate sentence, by the tool will be treated as a
false positive for any classification other than N/A.

The results of each technique can be seen in Table 6. Naive
Bayes moderately outperformed both competing techniques
in recall, precision and F-measure. Notably, the ROC area
for Naive Bayes is significantly higher, at 0.859 for Apache
Ant and 0.635 for Eclipse Platform, indicating that it is a far
more reliable model than the others, assuming correct and
incorrect classification share equal cost across all classes.

Table 7 shows a more detailed look, at the results from
classifying both Apache Ant and Eclipse Platform with Naive
Bayes. Note that FP’s are severely under-represented within
ground truth set and thus, perform very poorly during clas-
sification. The very small representation of FP’s conforms,
with the natural assumption that a feature request details,
what an actor wishes to include and not make a request for
exclusion. FO’s performed exceedingly well, upon closer ex-
amination. This is partially due to the tense feature, which
accurately labels the correct tense for 147 of the 178 norms
for Apache Ant. VO’s performed below par, due to being
semi-frequently mis-classified as a VP. This indicates fea-
tures that correlate strongly towards VO’s are underrepre-

Table 8: Results from the extraction evaluation
Project Precision Recall F-score
Ant 0.76 0.15 0.26
Eclipse 0.90 0.14 0.25

sented in how they are applied, to candidate sentences or
that features that correlate strong to VP’s are too exces-
sively applied to candidate sentences.

The recall score of VO’s were relatively poorer compared
to other classes such as VP’s across all evaluations. Scoring
0.647 compared to VP’s recall value of 0.797 in the Apache
Ant evaluation and significantly poorer at 0.167 compared
to VP’s recall of 0.757 in the Eclipse Platform evaluation.
However, with a ROC area of 0.635, this indicates that re-
sults presented are more reliable then selecting at random.
While it may seem appropriate, to infer that the classifica-
tion step suffers from poor generalization (in regards to R3),
on closer exception, the primary reason for mis-classification
was due to the poor result of the candidate sentence selec-
tion step as only 29 of the 64 norms was correctly identified.
However, 21 of these 29 norms were correctly classified, rep-
resenting a precision of 0.72.

In order to set a benchmark of what can be deemed as
“effective” in R2, we refer to Gao and Singh [15] to compare
and contrast Norms Miner’s classification results, to ensure
competitiveness at a state of the art level. As discussed in
Section 2, Gao and Singh propose a framework for extract-
ing normative relations, from business contracts that shares
a relatively similar approach to what is used in this paper.
In evaluating their approach they reported a recall of 0.74,
a precision of 0.75 and an F-measure of 0.74 on a ten-fold
cross-validation of their trained data set of 868 classified
sentences10 in contrast to our Naive Bayes results of 0.74
recall, 0.73 precision and an f-measure of 0.74 for Apache
Ant. When comparing the two approaches, it is important
to note that the input of each approach are vastly different
in terms of language used due to the different domains. The
data source used in their work are business contracts that
are well-written in plain English, and contain well-formed
deontic statements. In their approach they extract each sen-
tence and identify whether it contains a norm or not. In our
work, the description of the bug can contain solecistic state-
ments, programming code, slangs etc. Also, we were tasked
with identifying the most important sentence in a given bug
report. Theirs does not have this issue. Considering these
facts, we believe our framework provides at least comparable
performance to theirs.

5.5 Extraction
In evaluating the final step of the miner for R1, we com-

pare the final extracted norm with its classification against
the ground truth set and a survey completed by the two
independent evaluators. The ground truth set is used to de-
termine if the correct candidate sentence was used for extrac-
tion and that the correct classification was assigned. As the
extraction may be phrased in several different ways it could
not be validated by the ground truth set, instead a survey
was conducted asking the two evaluators if the extraction

10In evaluating a smaller but independent data set, they re-
ported higher scores of 0.83, 0.86 and 0.84 in recall, precision
and f-measure respectively.
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presented by the miner is a suitable summary of the norm
they identified in the ground truth set, with a unanimous
decision required. For a positive prediction, the extraction
process must output a subject-predicate-object. Accordingly
if this triplet cannot be extracted, a negative prediction is
made.

Thus, if the correct candidate sentence was used, with
the correct classification and a unanimous positive decision
of the extraction, the extraction is regarded as a true posi-
tive. A false positive is recorded when the extractor makes a
positive prediction but either the wrong candidate sentence
was used, the wrong classification assigned or the extraction
was rejected by the evaluators. A true negative is recorded
when the extractor makes a negative prediction and the re-
port was founded to not contain a norm discerned from the
ground truth set. Lastly, a false negative is recorded when
the extractor provided a negative prediction but the report
was found to contain a norm.

From the 178 reports in Apache Ant, 33 positive predic-
tions were made, of which 25 were confirmed true. This
represents a precision of 0.76, and recall of 0.15 and an f-
score of 0.26. From the 94 reports in Eclipse Platform, 10
positive predictions were made, of which 9 were confirmed
to be true. This represents a precision of 0.90, and recall
of 0.14 and an f-score of 0.25. These results can be seen in
Table 8.

Results show that the precision of this step remains at a
similar level to the previous two steps, however, the recall
substantially drops, resulting in a much lower f-score. This
results in the final output of the miner providing a high level
of certainty in the norms it presents but only encompasses
a small subset of norms that have been identified to exist.

In retrospect, a positive or negative prediction is directly
dependent on if a subject-predicate-object triplet can be found
and does not implicate if extraction is normative or the cor-
rect norm. This leads to the conclusion that the lower recall
relative to the previous two steps can be attributed to the
solecism, in the input and the method used to train the part-
of-speech and typed dependencies. As by default, the NLP
tool suite used is trained over a corpus of newspapers ar-
ticles, often undergoing strict editing to ensure proper lan-
guage and grammar is used while also limiting the use of
technical language and jargon. The opposite is true in re-
gards to bug reports.

6. DISCUSSION
In line with motivations of this work discussed in Section

1, we present a sample set of norms extracted from the data
set used in our evaluation to highlight and postulate possible
usages of such a miner. We note that due to the small input
of reports used and the relatively low recall of the extractor
that only 34 norms are analyzed. However, even with such
a small sample set, certain inferences can be made.

For example, the miner demonstrates how it can be used
to effectively mine future obligations. By externalizing this
information, core developers can quickly be notified about
the current needs of the software, that is currently missing in
a highly summarized form (as seen in row 1, 2 and 6). This
can also be presented to new joining members, who are in-
terested in developing code but do not know where to start.
The extractions shows detail at a very low level of granu-
larity, offering specifics in exactly what is currently lacking,
giving a clear direction to what needs to be done. For ex-

ample, row 2 outlines a current attribute, lacking desired
functionality and instructs the attribute to be extended to
support lists of lists.

FO’s can also be used to warn developers of potential
changes that might affect their work. As seen in row 7,
by capturing future changes, an actor who has code that
may be deprecated, when a dependency is updated can be
provided warning to resolve issues before the change is com-
mitted. This also works retroactively, as the same actor who
in this scenario failed to receive the warning and can look
at recent FO’s, to determine if anything has been changed
(by seeing if the parent report is now marked resolved) that
may be reason for the now broken code.

With appropriate information retrieval techniques, VO’s
and VP’s can be provided based on the context, of where
an actor is currently working. Due to the egalitarian and
flat nature of an OSSD community, a strategy of risk accep-
tance (as opposed to risk avoidance or mitigation) is com-
monly taken. By providing and contextualizing VO’s and
VP’s (that the report they were discovered in is still open),
an actor can make more informed decisions of how to inter-
act with another persons code. For example, row 4 details
behavior that under a certain pre-condition, a new jar will
always be created. An actor presented with this informa-
tion can now make more informed decisions such as to avoid
using the jar task or provide a default “external manifest
file”. This can directly assist with slowing or stopping the
propagation of bad code in new development.

Lastly, VO’s can be used as a method of troubleshooting
as seen in row 3 and 8. A user facing an issue but unable to
locate a cause (either to fix or avoid it) can query extracted
norms with appropriate terms (in this case “tomcat” and
“JSP”) to discern what the cause of the issue is. This in
turn can be used in bug reporting, allowing a reporter to
query if the behavior they observe is a (known) violation or
an expected behavior.

A result of utilizing bug reports as a data source for norm
externalization is that all but a few extracted norms where
norms of the system and not of the community. Upon in-
vestigation this was determined to be due to the nature of a
bug reports content which is to report on the system behav-
ior and not actor behavior. Preliminary results of running
Norms Miner on a mailing list repository has shown to cap-
ture and extract norms between actors; as actors and their
behaviors are included as topics of discussion in such a data
source.

Currently, mining big data faces problems in analyzing
data from a social perspective [33]. Software development
trends over recent years have shown a significant growth in
OSSD [10], which has a higher focus on social interaction
between contributors then previous traditional means. It is
our view that applying social context to current data-driven
software engineering techniques is becoming more impera-
tive. By making a software development community more
aware of its social influences and effects, greater insights can
be gained. These gains can include understanding which
normative behavior contributes to the success of a project
and which ones do not. Furthermore, by clearly defining
and increasing awareness of norms, a community can apply
a more pragmatic approach to norm detection and enforce-
ment.

6.1 Threats to Validity
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Table 9: A sample set of extracted norms
Row Bug Id Extracted Norm Class

Apache Ant
1 16871 Ant’s javadoc task should quote the file names correctly when generating the external file list. FO
2 39456 It would be nice to be able to define a <fileset> as the union of other more granular <fileset>s. FO
3 28439 Since I’m using Tomcat 5.0, I cannot compile my jsp with Ant. VO

4 29683
The jar task which contains a nested zipgroupfileset element, and does not specify an
external manifest file, will always rebuild the jar file, even if it is up to date.

VP

Eclipse Platform
5 427511 some UI elements (generally text) gets painted out of its expected region. VP

6 411405
the section should also update the toogle’s tooltip so that the user also sees the tooltip when
he hovers over the toggle hyperlink field.

FO

7 405814 for a new service version of ICU4J, we’ll be picking up version 50.1.1 instead of 50.1.0. FO

8 414142
we disable disableControl(tpl.clientArea, toEnable); and that should disable all typing in
the views and editors.

VO

In extracting norms from bug reports, our evaluations are
faced with the following threats to validity.

The data set used to evaluate the accuracy of the classifier
can be considered relatively small of just 300 bug reports.
However, due to the miner examining the entire bug report,
a significantly larger number of sentences are analyzed. In
total 2549 sentences were examined with 272 valid bug re-
ports. While in traditional papers in this domain greatly
exceed this number, we attribute this to exploiting a pre-
existing oracle [24, 39, 16] which utilize fields of the report
itself as a truth value (such as duplicates, time to fix or
who the report was assigned to). Instead we refer to sim-
ilar works that have no means of a pre-existing oracle and
thus, must create one through manual annotation. Gao and
Singh [15] utilize 1099 sentences for evaluating their norm
extraction in contrast with our 2549 sentences while Sorbo
et al. [37] classify 400 messages from mailing lists in their
evaluation in contrast with our 300.

Subjectivity of the oracle is also acknowledged as a threat.
To mitigate this, all information used in deriving the oracle
was constructed from independent sources, that were not
familiar with what heuristics where employed, what the fea-
tures where and were not permitted to see the authors de-
velopment set. Evaluators also must unanimously agree on
information, before adding it to the oracle further reducing
subjectivity.

In the evaluations of the classification stage, averages of
performance measure are used along with an ROC area mea-
sure. It is important to acknowledge that by using such
measurements, we accept the assumption that the cost of a
correct or incorrect classification, is static in cost across all
categories. While such an assumption allows an objective
evaluation of the classifier, it does not provide an evaluation
of its utility. For example, it is justifiable that a community
would find a violation of a current obligation more pressing
than a proposal for a new obligation. Thus, a classifier that
has a lower overall score but weighs more decisive classes
higher may be preferred. However, such a weighting scheme
would be highly subjective to each individual community,
offering poor generalization over any evaluations conducted.

7. CONCLUSION AND FUTURE WORK
In this paper we presented a tool called Norms Miner that

automatically extracts and classifies norms from bug reports
in open source communities. We presented a set of heuris-

tics for identifying a candidate sentence, within a bug report
that is expressive of the reports intent and potentially con-
tains a norm. We described a classification process that
classifies a norm within a candidate sentence, into one of
four norm types based on deontic norms. We presented an
extraction process that extracts a norm, from a candidate
sentence in the form of a subject-predicate-object triplet with
and optional antecedent.

The work presented in this paper, intends to serve as an
initial step towards modeling norms in OSSD. It is the au-
thors intention to further explore the issue, further refining
Norms Miner into a more comprehensive and robust tool for
mining norms. Towards this end, several directions of work
can be taken.

Currently, Norms Miner can only extract norms from a
bug tracker. By expanding the framework to utilize more
data sources such as mailing lists, code comments, commit
logs and supporting documentation, a more comprehensive
range of norms could be extracted, providing a better cover-
age of normative behavior across the entire OSSD commu-
nity.

Due to extracting a norm from a single candidate sen-
tence, the norms relevance is questionable and lacks meta-
data. While being descriptive of the norm, extracted norms
do not currently inform the wider communities conformance
of the norm, if its enforced or what sanctions does it entail.
Inclusion of this information into a normative model built
around extracted norms would further increase the useful-
ness of our framework. To address this issue we propose to
codify extracted norms. This would provide several substan-
tial benefits, such as presenting the same norm encountered
in several different places as a single norm, allowing a user
to track the conformance of a norm, sanctions applied due
to the violation and how it emerged within the community.

Lastly, results from Norms Miner can be utilized for em-
pirical research into how norms influence and effect OSSD.
Providing a method for answering questions such as; which
norms when violated create high priority bugs or if similar
norms correlate to the time a bug report takes to fix.
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