
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303515399

Approaches for prioritizing feature improvements extracted from app reviews

Conference Paper · June 2016

DOI: 10.1145/2915970.2916003

CITATIONS

61
READS

628

3 authors:

Swetha Keertipati

University of Otago

4 PUBLICATIONS 109 CITATIONS

SEE PROFILE

Bastin Tony Roy Savarimuthu

University of Otago

170 PUBLICATIONS 1,731 CITATIONS

SEE PROFILE

Sherlock A. Licorish

University of Otago

130 PUBLICATIONS 1,843 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sherlock A. Licorish on 31 December 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/303515399_Approaches_for_prioritizing_feature_improvements_extracted_from_app_reviews?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303515399_Approaches_for_prioritizing_feature_improvements_extracted_from_app_reviews?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Swetha-Keertipati?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Swetha-Keertipati?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-Otago?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Swetha-Keertipati?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bastin-Tony-Roy-Savarimuthu?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bastin-Tony-Roy-Savarimuthu?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-Otago?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bastin-Tony-Roy-Savarimuthu?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sherlock-Licorish?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sherlock-Licorish?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-Otago?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sherlock-Licorish?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sherlock-Licorish?enrichId=rgreq-44b1be8377aa741d04f9777bdb203aa1-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxNTM5OTtBUzo1Nzc0NTA3NDY0MjEyNDhAMTUxNDY4NjM5NDk5MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Full citation: Keertipati, S., Savarimuthu, B. T. R. and Licorish, S. A. 2016. Approaches for
prioritizing feature improvements extracted from app reviews, in Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering (EASE 2016) (Limerick, Ireland,
June 1-3, 2016). ACM, 1-6. 10.1145/2915970.2916003.

Approaches for Prioritizing Feature Improvements

Extracted from App Reviews
Swetha Keertipati

Department of Information Science
University of Otago

Dunedin, New Zealand
swetha.keertipati@otago.ac.nz

Bastin Tony Roy Savarimuthu
Department of Information Science

University of Otago
Dunedin, New Zealand

tony.savarimuthu@otago.ac.nz

Sherlock A. Licorish
Department of Information Science

University of Otago
Dunedin, New Zealand

sherlock.licorish@otago.ac.nz

ABSTRACT
App reviews contain valuable feedback about what features
should be fixed and improved. This feedback could be ‘mined’ to
facilitate app maintenance and evolution. While requirements are
routinely extracted from post-release users’ feedback in
traditional projects, app reviews are often generated by a much
larger client-base with competing needs and priorities and ad hoc
structure. Although there has been interest aimed at exploring the
nature of issues reported in app reviews (e.g., bugs and
enhancement requests), prioritizing these outcomes for improving
and evolving apps hasn’t received much attention. In this
preliminary study we aim to bridge this gap by proposing three
prioritization approaches. Driven by literature in other domains,
we identify four attributes (frequency, rating, negative emotions
and deontics) that serve as the base constructs for prioritization.
Thereafter, using these four constructs, we develop three
approaches (individual attribute-based approach, weighted
approach and regression-based approach) that may help
developers to prioritize features for improvements. We evaluate
our approaches in constructing multiple prioritized lists of
features using reviews from the MyTracks app. It is anticipated
that these prioritized lists could allow developers to better focus
their efforts in deciding which aspects of their apps to improve.

Keywords
App reviews; crowdsourcing; prioritization; requirements
elicitation.

1. INTRODUCTION AND BACKGROUND
Determining the software features that users require is dealt with
in the Requirements Engineering (RE) stage of the Software
Development Life Cycle (SDLC). This activity is established to
be quite challenging, as Brooks noted “the hardest single part of
building a software system is deciding precisely what to build”
[1]. While traditional and agile requirements elicitation processes
involve users specifying the software requirements upfront or
during the SDLC, that are then developed, apps are generally
released with a feature cohort that is subsequently expanded
based on feedback available in the form of app reviews [2]. Also,
unlike traditional and agile software developments where the
feedback about post-release changes required come from the
same client(s), requirements1 come from numerous clients in the

1 In this work, we consider users’ requests for bug fixes, enhancements and new
features logged in reviews (under the umbrella of improvements), as a form of

app domain. These clients may have (conflicting) preferences
about features that need to be fixed or enhanced. Furthermore,
app reviews are usually voluminous and ambiguous [3] compared
to users’ feedback provided in traditional and agile software
projects. Thus, developers often need approaches to identify and
extract these requirements from reviews, before prioritizing in
which order they should be fixed.

While there have been works studying the nature of complaints
[4, 5] and identifying features of apps that need to be improved
[6], prioritization of features that need to be fixed hasn’t received
much attention. To address limitations of well-known
prioritization techniques such as analytic hierarchy process AHP
that suffer from scalability problems [7], researchers have
proposed new techniques such as clustering [8], case-based
ranking [9], and the B-Tree method [10]. However, these
methods are not suitable for prioritizing requirements from app
reviews because of the volume of reviews that are logged by
users, and the ensuing concerns (e.g., identifying and grouping
issues from natural language text, and determining the severity of
a problem). Also, these methods assume that clients have clear
priorities and they participate in the prioritization process to rank-
order feature preferences. For example, the study of Laurent et al.
[8] assumes that the identified requirements ‘clusters’ will be
rank-ordered by clients, and the work of Avesani et al. [9]
requires clients to be involved in the preference elicitation step.
In contrast, in the app domain, there is no single client. Thus, app
developers must face the challenging task of extracting a unique
set of features from unstructured reviews that require action, and
then subsequently employ suitable mechanisms for assigning
priorities.

In contrast, gathering feedback and assigning priorities are well-
structured in larger projects such as Android OS that receive
voluminous feedback similar to the app domain. For example, the
issues logged into appropriate categories (e.g., bugs and
enhancements) are typically assigned priorities based on severity
(e.g., low, medium and high) by a dedicated group of individuals
with domain knowledge. However, in the app review domain,
features need to be first extracted from unstructured reviews
before undertaking prioritization. As noted above, this poses a
challenge to development teams, and particularly those with
limited resources. Also, the prioritization approach often needs to

crowdsourced requirements, which aids software maintenance and product
evolution.

http://dx.doi.org/10.1145/2915970.2916003

consider aspects such as the prevalence of an issue (e.g.,
frequency of a reported enhancement request) amongst the user
population, and the seriousness of an issue (e.g., a feature not
working versus a feature needing to load faster). Some app
development firms employ community managers [11] who
(manually) monitor and analyze app reviews, identify issues,
respond to customers, and also raise issues that need to be fixed
to the development team, thus contributing towards the
prioritization process. Though beneficial for community
engagement [11], apart from being tedious and time consuming,
this may not be affordable for small groups of app developers.
These issues call for structured approaches to prioritize features
for improvements logged in app reviews (following a data-driven
perspective).

How can we use data-driven approaches to prioritize features
for improvements extracted from user reviews? To answer this
question we have developed three approaches which are likely to
reduce the amount of manual work required in prioritizing
features for improvements. Although preliminary, we anticipate
that these approaches may have utility for app developers, and
may also stimulate research interest.

The rest of the paper is organized as follows. In Section 2 we
describe the three specific approaches for prioritizing features for
improvements. In Section 3, we conduct an evaluation to assess
the suitability of our approaches using reviews from the
MyTracks2 app. In Section 4 we compare the three approaches,
highlight the implications, and review limitations and future
work.

2. FEATURE PRIORITIZATION
In this section, we first discuss the steps to identify features that
need to be fixed from app reviews. We then discuss how the four
attributes considered for prioritization are identified. Finally, we
discuss the three prioritization approaches.

2.1 Feature identification
We first extracted the latest 4,442 reviews for the MyTracks app
from the Google Play Store using Google API. We had
previously employed other text mining techniques in studying
reviews from this app, so it was convenient to use these reviews
to evaluate our prioritization approaches [12]. Each review
contained a title, review comment (which may identify bug fixes,
enhancements and new features) and the rating provided by the
user. We followed earlier work [3, 12] which show that multiple
issues may be reported in one review, and conducted our analysis
at the sentence-level. Thus, each review was parsed into
sentences, based on a set of delimiting characters (e.g., ‘.’ and
‘!’). The next step was to identify the sentences that met the
criteria for the study. Since our focus was to study features that
need improvements, we include those sentences that were a part
of reviews that had low ratings (i.e., =< 3, similar to [13]). We
also anticipated that sentences that contained negative terms and
emotions would highlight users’ dissatisfaction with app features,
and these were tagged for analysis. This pre-processing resulted
in 1,271 sentences for the MyTracks app (out of a total of 8,623
sentences from 4,442 reviews), which were used for further
analyses. Prior work has shown that important features discussed
in the reviews can be extracted using Part-of-Speech (POS)
tagging [14] and N-gram analysis [15] techniques. In this work,
we employ these well-known techniques and identify nouns in
sentences to represent features that need to be fixed, similar to
the work in [14, 16].

2https://play.google.com/store/apps/details?id=com.google.android.maps.mytracks

2.2 Attributes considered for prioritization
The next step of the process involved the identification and
extraction of attributes that can be used as the basis for
prioritizing features for improvements. Three proposed
approaches (discussed in the next subsection) were developed
based on four different attributes of app reviews—frequency,
ratings, negative emotions and deontics. These four attributes are
derived from literature in three different domains. The first two
are characteristics that have been used in a range of works in app-
review mining in different contexts [13, 14, 17]. Guzman and
Maalej’s [14] study used feature count (frequency) to identify
important features, and Fu et al. [13] used the rating of reviews to
detect inconsistent comments (i.e., if there was discrepancy
between rating provided and the sentiment expressed in review
comments). The negative emotion and deontics attributes were
derived from psychological [13] and sociological literature
respectively [18]. We discuss these four attributes and justify
their selection in this work below.
2.2.1 Frequency
Frequency (or count) of a feature can reveal the magnitude of the
problem associated with that feature [14]. In this work the
frequency is computed by checking whether a given feature (e.g.,
battery) is present in each of the sentences. If the feature is
present, its count is incremented. Each feature is searched for
only once in the sentences. The features are then rank-ordered
using the count measure.

2.2.2 Rating
The rating attribute is based on the rating score (one to five)
provided by app users when rating the app. For each feature that
appears in the sentences, a running sum of the rating that
sentence received is calculated, and then the average is found
based on the number of times it appears. The feature with the
lower rating would receive a higher priority.

2.2.3 Emotions
Psychologists have analyzed emotion expressed in text using
categories identified by Parrott [19], who identified over 100
emotions and classified them into the primary emotion
categories—anger, fear, joy, love, sadness, and surprise.
Research has revealed that negative emotions such as anger,
sadness and fear could signal discontent of users [13]. Thus, we
consider words that belong to the three negative categories
(sadness, anger, and fear) in our analyses. The words for our list
of emotions were obtained from the LIWC dictionary [20], and
from word lists used in other emotions-based research [21].
Words from the LIWC categories for sadness, anger, and anxiety
(i.e., fear) were used. Features mentioned in sentences were
queried for their association with the words in each of the
emotion words in the lists. If a feature was present along with a
word from a category, the count was incremented for that
category. The feature with the higher count of negative emotions
increased in priority.

2.2.4 Deontics
Sociologists investigating social-media data to obtain insights
have noted that deontic terms such as ‘must’, and ‘must not’ are
used to indicate the persuasiveness of a message [22], signaling
obligations and prohibitions respectively [18]. For example, the
sentence “this exercise tracking app must not ask for my contact
details” indicates that the user is strongly against the app
requiring contact details. These deontic terms may be useful in
determining the urgency with which features should be fixed. We
constructed a dictionary containing the modal verb phrases for
prohibitions and obligations respectively. The number of times

features were mentioned along with a deontic term (prohibitions,
obligations) in a review sentence was computed. The feature with
the higher count of deontic terms would obtain a higher priority.

2.3 Three prioritization approaches
We review our three prioritization approaches in this subsection.

2.3.1 Individual attribute-based approach
In this approach, each attribute is examined individually. For
example, when ranking features based on frequency count, the
ratings are not considered. This approach may be useful where
developers are interested in only particular attributes, such as the
ratings. This silo-approach would enable developers to obtain a
quick overview of the priorities based on how users perceive
their various app features based on a specific criteria (e.g.,
rating), without needing to look at the other attributes. The
usefulness of such an approach has been demonstrated using the
frequency approach in app-review mining and other relevant
domains [13, 14]. However, the limitation of this approach is
that it forgoes potential insights that could be obtained through an
integrated approach involving specific combination of attributes.
This is the main focus of the weighted approach, introduced next.

2.3.2 Weighted approach
This approach enables the consideration of two or more attributes
in the prioritization process by allowing them to be combined.
The weighted approach that we propose here is based on prior
research in Multi Criteria Analysis (MCA) [23] that is used to
find the optimal choice between different alternatives. A method
of MCA is the Weighted Sum Model. In this approach, the values
for each criterion (e.g., rating and frequency) must first be
normalized so they become comparable. Weights are then
assigned to each criterion to show their relative importance.
These weights are multiplied by the values of the corresponding
attribute, and then added together to determine the weighted
model score. These scores are then used to rank the different
alternatives considered.
All four attributes (frequency, ratings, negative emotions and
deontics) can be combined, to produce the priority for feature i
using the formula
𝐏𝐏(𝐢𝐢) = 𝐂𝐂𝐂𝐂 ∗ 𝐅𝐅(𝐢𝐢) + 𝐂𝐂𝐂𝐂 ∗ 𝐑𝐑(𝐢𝐢) + 𝐂𝐂𝐂𝐂 ∗ 𝐄𝐄(𝐢𝐢) + 𝐂𝐂𝐂𝐂 ∗ 𝐃𝐃(𝐢𝐢) (1)

where, F(i) is the normalized frequency of the chosen feature,
R(i) is the normalized average rating for the feature, E(i) is the
normalized emotion count for the feature, and D(i) is the
normalized deontics count for the feature. C1 to C4 are the
weights associated with the attributes where the sum of the
weights is 1. The attribute considered to be of higher importance
would receive a higher weighting. This enables the priority value
for all features to be computed, based on which the features may
be ranked.
The values of each of the four attributes are normalized to a scale
of 0 to 1 by applying the well-known formula given in Equation
2, before they are used in Equation 1. The normalized score of a
feature i is given by Norm (i), where xi represents the attribute
score of feature i (i.e., the feature under consideration), xmax and
xmin correspond to the maximum and minimum scores among all
features considered (for a given attribute).

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 (𝐢𝐢) = (𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐍𝐍𝐢𝐢𝐦𝐦) / (𝐱𝐱𝐍𝐍𝐦𝐦𝐱𝐱 − 𝐱𝐱𝐍𝐍𝐢𝐢𝐦𝐦) (2)

It should be noted that the approach can be customized by
practitioners depending on their experience. For example, if they
consider that frequency and rating are the two important
attributes to consider then C3 and C4 can be assigned a value of
zero. Also, it should be noted that the formula in Equation 1
provides the ability for a human-user to specify weights for each

attribute considered based on which attribute may be more
important to a developer (or a development team). These weights
could come from domain knowledge, and/or the experience of
the team. The inclusion of this human aspect may be beneficial in
the rapidly changing app domain as humans may have insights
derived from a range of apps which can be used to assign weights
(instead of considering just one app). Thus, this approach is a
blend of data-driven bottom up approach (i.e., use of values
obtained for attributes from the reviews) and a top-down
approach (i.e., specification of weights for individual attributes
based on prior knowledge).

2.3.3 Regression-based approach
The third approach is a pure data-driven approach where the
investigation aimed at examining influential variables for
determining the severity of reviews, and thus, urgency with
which a feature should be fixed. We employed multiple
regressions where the regression equation used for the prediction
of a dependent variable (Y) is given by Equation 3. Here, b0 is a
constant, b1 is the coefficient of the first predictor variable (x1)
and bn is the coefficient of the last predicator variable (xn).

𝐘𝐘 = 𝐛𝐛𝟎𝟎 + (𝐛𝐛𝐂𝐂 ∗ 𝐱𝐱𝐂𝐂) + (𝐛𝐛𝐂𝐂 ∗ 𝐱𝐱𝐂𝐂)+ . . . +(𝐛𝐛𝐦𝐦 ∗ 𝐱𝐱𝐦𝐦) (3)

Using the regression approach, we pursued two small studies. In
both the studies, there were a total of 25 independent variables.
These were: (a) top-20 feature counts (i.e., top-20 features based
on frequency attribute), (b) emotion category counts (three forms
of emotions – sadness, anger and fear) and (c) deontic category
counts (two such categories – obligations and prohibitions).

In the first study, the dependent variable was the rating. The
objective here was to investigate whether a model that can
predict the rating can be constructed based on the 25 independent
variables. If such a model can be constructed, then the correlation
coefficients of the statistically significant variables (e.g., b1 and
b2 in Equation 3) can be used as the basis for prioritization. The
higher the coefficient for a particular statistically significant
variable (i.e., a feature), the higher is its influence on the
dependent variable. Hence, such a feature would have a higher
priority for fixing. In the second study we changed the dependent
variable. Instead of rating, we used a tag that was assigned by
independent raters, where the tag represented the severity (or
urgency) of fixing a problematic feature from a scale of 0 to 3. A
tag of ‘0’ was given to sentences where valuable or actionable
information (i.e., features with issues) was not identified. A tag
of ‘1’ was given to sentences that contained suggestions for
enhancement, a tag of ‘2’ for problems with the functioning and
performance of the core features of the app, and a tag of ‘3’ for
severe problems where an app feature was unusable. Based on
these guidelines, independent coders (PhD students in
computing) familiar with app development were asked to
examine each of the negative sentences, and rate the severity of
the problem, from the perspective of an app developer.

Note that the first study does not include any additional
information from the humans (i.e., all the variables are inferred
from the app review dataset). In contrast, the second study brings
human into the loop to assign tags indicating the severity of a
feature that needs to be fixed (but not for prioritizing features).
The two analyses were undertaken to scrutinize if there is a
difference in the regression analyses of the human-coded
evaluation (study 2) and the data-centric evaluation (study 1).
The result of this analysis can inform the suitability of these two
types of regression approaches for the prioritization process. We
examine the suitability of this and the other two approaches in
our evaluation presented next.

3. EVALUATION AND ASSESSMENT
This section presents the results obtained from the three
prioritization approaches for the MyTracks app. MyTracks is an
exercise tracking app available from the Google Play Store,
which records the user’s path, speed, distance, and elevation
while they walk, run, and bike. While recording, users can view
their data live, annotate their paths, and hear voice
announcements of their progress. The app also allows users to
sync and share their tracks with friends via Google Drive, and
social media sites, such as Facebook. It also integrates data from
heart rate monitors developed by certain external vendors. The
results of the three prioritization approaches for 1,271 negative
sentences (obtained using the process discussed in Section 2) are
presented in the following subsections.

3.1 Individual attribute-based ranking
Given space restrictions, the top-10 features based on the
frequency-based ranking and emotion-based ranking approaches
are shown in Table 1 (out of 57 features identified for the app).
From the frequency based ranks (columns 1-2), it can be
observed that the feature gps was found to be the most mentioned
feature within the negative review sentences, with a count of 169.
The feature track was a close second, with 168. This is intuitive
as it is an exercise app that uses GPS to track users’ fitness. Users
who have problems with the main features that the app claims to
provide would voice their concerns when their expectations are
violated. This can be seen in reviews such as “the application
keeps hanging so the track is lost”. Map, which has a count of
109, was the feature ranked next. The obvious issues with this are
problems with the mapping of their tracks, as shown by “maps
usually not appear on my track”. However, these instances may
have also arisen due to issues related to the integration with
Google Maps, which is a functionality that the app advertises.
The next two features correspond to the tracking of the time taken
to complete a workout and the nature of the data recorded. The
common problems included the inaccuracy of the time being
recorded and the data being lost or inaccurate.

Table 1. Prioritization using frequency and emotion
attributes

rank Frequency Emotion

feature count feature count

1 gps 169 gps 240

2 track 168 track 228

3 map 109 map 162

4 time 79 time 103

5 data 58 data 76

6 battery 51 signal 70

7 file 50 file 64

8 signal 49 package 63

9 package 48 battery 61

10 distance 41 speed 52

Emotion-based ranking tells a slightly different story (columns 4
and 5 of Table 1). While the top-five features retain the same
ranking as frequency, the rank-orders of the other features are
different. Also, the feature distance does not appear in the
emotion-based ranking which is replaced by speed in this
ranking. An implication of using this silo-approach is that, if
prioritization is based on a different attribute, the same team will
prioritize features differently. We posit that this approach will be
beneficial for a team to compare the ranks from different
attributes to obtain an understanding of the top-problematic
features that are consistent across all attribute-based ranking
schemes. For example, if the top-5 features appear to be

consistent in all these ranking mechanisms, the team can
confidently go ahead with improving those features for the next
iteration.

3.2 Weighted ranking
To demonstrate the operationalization of the weighted approach,
we consider the use of frequency and rating attributes (instead of
all four attributes shown in Equation 1). Table 2 shows the results
involving the two attributes with three different weight
combinations. Columns 3, 5 and 7 show the priority values for
three different combinations of weights for C1 and C2 [0.5 & 0.5,
0.7 & 0.3, 0.3 & 0.7]. When both frequency and rating have the
same weights, track, gps, and map appear to be the top three
ranked features. This is also the case when frequency has a
higher weight than rating. However, when rating is given more
importance, design and sharing are among the top three ranked
features, while map ranks 6th.
Table 2. Ranks for weighted approach (frequency and rating)

rank P= (0.5*F)+(0.5*R) P=(0.7*F)+(0.3*R) P=(0.3*F)+(0.7*R)

feature priority feature priority feature priority

1 track 0.72 track 0.83 design 0.70

2 gps 0.70 gps 0.82 sharing 0.62

3 map 0.58 map 0.60 track 0.61

4 design 0.50 time 0.46 gps 0.58

5 sharing 0.46 data 0.37 export 0.56

6 time 0.45 speed 0.34 map 0.55

7 export 0.41 battery 0.33 calorie 0.51

8 speed 0.40 distance 0.32 kml 0.50

9 route 0.39 file 0.32 route 0.50

10 calorie 0.38 signal 0.31 file 0.50

There were a total of 16 unique features that appeared in the top-
10 lists (in Table 2). Out of the 16, 3 appeared in all three (track,
gps and map), 8 appeared in two lists and 5 appeared in only one
of the three lists. It is interesting to note that the results for
weighting scheme 2 (C1=0.7 and C2=0.3), shown in column 4 of
Table 2, is similar to the results shown in column 2 of Table 1.
When comparing the two columns, the ranks for the first two
features are reversed, but otherwise the other features in the top-5
are consistent. Only one of the 10 features differs (speed appears
in Table 2 vs. package in Table 1). However, the ranks for the
features in the bottom half of the lists are different. These results
show that the weights chosen will significantly impact the
features that are selected for prioritization (i.e., financial gains or
market share could be foregone by not choosing the right
weights).

3.3 Regression-based ranking
While the weighted approach involves experts knowledgeable in
the domain of investigation, which in many cases may be
available within an organization, and has also been demonstrated
in other examples in software engineering (e.g., customizing and
fine-tuning COCOMO models [24] based on organizational data
and experience), we now investigate if important features can be
inferred purely based on a data-driven approach. We examine the
outcomes of the two types of regression analyses conducted next.

The first study used the rating provided by the app-reviewers as
the dependent variable. The multiple regression conducted
produced a regression model with six significant variables out of
25 (p<0.05): route, widget, package, speed, map and anger.
Despite returning a significant model however, the six variables
only accounted for 3% of the variation in rating.
In the second study, tags were assigned by independent coders
who examined the review sentences from the viewpoint of

developers (as discussed above). For the MyTracks app, there
were four coders who coded the 1,271 sentences (a four-way
split). The interrater reliability (based on 100 sentences coded)
for the study using the intraclass correlation coefficient (ICC)
[22] metric was 0.84 (indicating 84% agreement). From the
regression analysis with tags as the dependent variable, a
significant model emerged (F22.48 = 20.04 with p < 0.01). The
Adjusted R squared value accounted for 20% of the variance in
the urgency to fix certain features (compared to 3% for the first
study). The 10 statistically significant features (out of 25) from
this analysis are shown in Table 3.

Table 3. Significant features from regression analysis
Rank Feature Coefficient Rank Feature Coefficient
1 package 1.17* 6 gps 0.61*

2 battery 0.91* 7 accuracy 0.46**

3 download 0.69* 8 file 0.46*

4 elevation 0.67* 9 speed 0.42*

5 distance 0.62* 10 track 0.39**

Note: ** = p<0.01, *=p<0.05

The magnitudes of the coefficients of the statistically significant
variables indicate the priority for fixing that feature. The higher
the coefficient, the higher is its impact in influencing the
dependent variable (i.e., tag). The result suggests that the feature
package should be given the top-priority. This is because one unit
increase in the package variable increases 1.17 units of the tag
variable. This suggests those sentences that had high tag values
(say 3, which indicates high severity) had more instances of
package appearing in them as compared to those that were tagged
lower (say 0 or 1). Hence, package is ranked the highest. Our
manual verification revealed that the majority of reviews that
contained the word ‘package’ were complaining that the app had
indeed become unusable. In the frequency-based ranking of
features (Table 1), package was ranked 9th, with a count of 48.
This suggests that package may be more influential in improving
the outcome of the review than can be observed just by looking at
the frequency. So, the regression analysis has revealed insights
that may not be obvious. This pattern may also be observed when
looking at the features gps, track, and map. These appeared to be
the most problematic features from the frequency-based ranking.
However, the regression results suggest there are other more
problematic features such as package, battery and download.

Looking at the features that exist in both the top-ranked features
from frequency-based ranking and this regression outcome
(Table 1 and Table 3), package, battery, distance, gps, file, and
track (a total of 5 features) exist in both. This suggests that the
individual attribute-based ranking that considers the frequency
attribute is closely aligned with the regression results using tag as
the dependent variable. Additionally the results using tag as the
dependent variable is closer to the weighted approach (with 7
matches out of 10 – but with different rank-orders) where the
values of C1 and C2 for the frequency and rating attributes are
0.7 and 0.3 respectively, than the other two weight-combinations
considered (on comparing Table 3 and Table 2). This shows that
the weighted approach is closer to the regression-based approach
than just the frequency based approach.

4. DISCUSSION
The research question addressed in this work is: How can we use
data-driven approaches to prioritize features for improvements
extracted from user reviews? Based on inspirations from the
literature on app-review mining, psychology and sociology this
paper identified a set of four attributes – frequency, rating,
emotions and deontics. These were used to construct three

prioritization approaches (individual attribute-based approach,
weighted approach and regression approach). Using MyTracks as
a case study, it was shown that the three approaches can be used
to prioritize feature improvements. However, there are relative
strengths and weaknesses of these approaches and these are
discussed below. The subsequent subsections highlight the
implications of our outcomes, and the limitations and future
work.

4.1 Comparison of the three approaches
The individual attribute-based approach is a silo prioritization
approach (or subset of the weighted approach) where a single
attribute is considered for prioritization. The approach can be
used in two ways. First, it enables developers to prioritize
features based on what they consider to be the most important
attribute (similar to what has been adopted elsewhere [13, 14]).
Second, by enabling the possibility of investigating all the four
silo-rankings for the same features it facilitates the comparison of
rankings. This could enable developers to make informed
decisions about which features to prioritize (e.g., choosing
features that appear in all the four ranking schemes). So, we
propose the use of this approach for exploratory purposes, since it
may miss potential insights that can be revealed by combining
different attributes.
The weighted approach allows different attributes to be
considered (in various combinations) that are deemed significant
by development teams. As certain attributes of reviews may be
more important to developers than others when prioritizing
features for improvements, practitioners need an approach that
can serve as a ‘what-if’ scenario analyzer. This is achieved by
considering only those attributes that are considered to be
relevant (in Equation 1) and also adjusting the weights of
attributes. It should be noted that the approach values human
expertise and experience by soliciting weights of different
attributes that are combined. As development teams become
more experienced (e.g., through domain knowledge gained in
building several apps in the same genre, say games), we posit that
the assignment of weights should become less cumbersome. For
example, the success of choosing a particular weight in the
prioritization of feature improvements for an early iteration may
be used to determine the weights for subsequent iteration(s).
Though the weighted approach can be beneficial for development
firms with expertise in the app domain, startups and small app
development firms may lack such knowledge, and a pure data-
driven approach might be useful for them. We suggest the use of
the regression based prediction approach as a bootstrap
mechanism to compensate for the lack of expertise. The use of
this approach over time can be used to identify the features that
tend to routinely run into problems and mitigation strategies
could be planned. Another advantage of the data-driven approach
is that it might provide specific ‘micro-insights’. Often,
knowledge within the development firm is based on common
trends observed over time (i.e., macro-insights). However,
emerging micro-trends (i.e., new problematic features) may not
have yet become the common knowledge, and hence, the
weighted or attribute-based approaches may not be suitable to
infer those. For example, certain features in a released version of
an app can quickly run into problems causing discontent among
users. These should thus be swiftly identified and prioritized for
improvements. We indeed observed this issue for MyTracks
latest release. Some users complained about the app not working
after upgrading to Android 5.1 Lollipop. Also, some users
complained about a specific brand of heart rate monitor (Polar
H7 monitor) not working with the latest version of the app
despite the support indicated. These users promptly provided

poor ratings (rating =< 3). Since these two cases may have
affected only a small proportion of users, they do not appear in
the top-10 frequency-based list. However, these would be
identified more easily by the data-driven approach when
compared to the other two approaches, since the regression
approach identifies priorities based on correlations. Thus, the
regression approach appears to possess the most promise of the
three. Having said that, we have shown the result using the
weighted approach is in fact closer to that of the regression
approach (refer to Sections 3.2 and 3.3). However, there is a
requirement to select the ‘correct’ weights based on expertise.

4.2 Implications
This work contributes to research efforts aimed at enabling
requirements prioritization in the app development domain by
proposing three approaches. These approaches provide a layer of
abstraction that hides low-level details from the developers,
where they do not need to look at app reviews directly to identify
app features for improvements. Instead, they may use the
proposed approaches to determine which aspects of their app to
enhance or fix next. More broadly, our approaches can
complement those that identify features from reviews (e.g.,
Android OS reviews) [6, 16], in going one step further to help
with prioritization.
These approaches could be of utility to practitioners. The three
approaches presented above are complimentary in nature.
Developers may use our approaches as part of a two-stage
prioritization process. The individual attribute-based approach
may be used for exploratory investigations of troublesome
features, followed by either the weighted approach (contingent to
prior experience) or a data-driven regression approach (subject to
lack of experience). The latter approach is also useful for
bootstrapping feature prioritization, and identifying micro-trends
of features that need urgent attention.

4.3 Limitations and future work
Our study considered reviews which had a rating of =< 3, in line
with previous studies [13]. However, there could be some
sentences that contain problematic features in reviews with
ratings of 4 or 5, which may have been missed, a threat to the
validity of our approach. Our evaluation results have been
presented for one case study, which affects the work’s
generalizability. We intend to conduct further evaluations in
different app domains (e.g., games and health apps) to examine
the domain-specific insights about features that need to
prioritized for improvements.
We intend to experiment with machine learning algorithms (e.g.,
Conditional Random Fields [25]), for automatically tagging large
amounts of reviews. Such approaches would require developers
to tag only a small subset of reviews, which will then be used as
input to automated review tagging. Furthermore, there is scope to
create a toolset for extracting reviews from the Google Play
Store, and parsing these to prioritize features for improvements.
We will also consider issues associated with features during the
prioritization process (e.g. time being inaccurate).

5. REFERENCES
[1] Brooks, F. No Silver Bullet Essence and Accidents of Software
Engineering. Computer, 20, 4 (1987), 10-19.

[2] Hosseini, M., Phalp, K. T., Taylor, J. and Ali, R. Towards
Crowdsourcing for Requirements Engineering (2014).

[3] Chen, N., Lin, J., Hoi, S. C., Xiao, X. and Zhang, B. AR-Miner:
Mining Informative Reviews for Developers from Mobile App
Marketplace. In Proc. of ICSE, 2014, 767-778.

[4] Khalid, H., Shihab, E., Nagappan, M. and Hassan, A. E. What do
mobile app users complain about? Software, IEEE, 32, 3 (2015), 70-77.

[5] Iacob, C. and Harrison, R. Retrieving and Analyzing Mobile Apps
Feature Requests from Online Reviews. In Proc. of MSR, 2013, 41-44.

[6] Maalej, W. and Nabil, H. Bug report, feature request, or simply
praise? on automatically classifying app reviews. In RE, 2015, 116-125.

[7] Achimugu, P., Selamat, A., Ibrahim, R. and Mahrin, M. N. A
Systematic Literature Review of Software Requirements Prioritization
Research. Information and Software Technology, 56, 6 (2014), 568-585.

[8] Laurent, P., Cleland-Huang, J. and Duan, C. Towards automated
requirements triage. In Proc. of RE, 2007, 131-140.

[9] Avesani, P., Bazzanella, C., Perini, A. and Susi, A. Facing scalability
issues in requirements prioritization with machine learning techniques. In
Proc. of RE, 2005, 297-305.

[10] Beg, R., Abbas, Q. and Verma, R. P. An approach for requirement
prioritization using b-tree. In Proc. of ICETET, 2008, 1216-1221.

[11] Moretti, A. and Tuan, A. The social media manager as a reputation’s
gatekeeper: an analysis from the new institutional theory perspective.
ISSN 2045-810X (2015), 153.

[12] Patel, P., Licorish, S., Savarimuthu, B. T. R. and MacDonell, S.
Studying expectation violations in socio-technical systems - A case study
of the mobile app community, To appear in Proc. of ECIS, 2016.

[13] Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J. and Sadeh, N. Why
people hate your app: Making sense of user feedback in a mobile app
store. In Proc. of SIGKDD, 2013, 1276-1284.

[14] Guzman, E. and Maalej, W. How Do Users Like This Feature? A
Fine Grained Sentiment Analysis of App Reviews. In RE, 2014, 164-172.

[15] Suen, C. Y. N-Gram Statistics for Natural Language Understanding
and Text Processing. Pattern Analysis and Machine Intelligence, IEEE
Transactions 2(1979), 164-172.

[16] Lee, C. W., Licorish, S., Savarimuthu, B. T. R., MacDonell, S. and
Patel, P. They’ll Know It When They See It: Analyzing Post-Release
Feedback from the Android Community (2015), In AMCIS, 2015, 1-11.

[17] Martin, W., Sarro, F., Jia, Y., Zhang, Y. and Harman, M. A Survey
of App Store Analysis for Software Engineering. RN, 16 (2016), 02.

[18] Frantz, C., Purvis, M. K., Nowostawski, M. and Savarimuthu, B. T.
R. Modelling Institutions Using Dynamic Deontics. In Proc. of PRIMA,
2014, 153-162.

[19] Parrott, W. G. Emotions in Social Psychology: Essential Readings.
Psychology Press, 2001.

[20] Pennebaker, J. W., Francis, M. E. and Booth, R. J. Linguistic Inquiry
and Word Count. Mahway: Lawrence Erlbaum Associates, 71 (2001).

[21] Wang, W., Chen, L., Thirunarayan, K. and Sheth, A. P. Harnessing
Twitter "Big Data" for Automatic Emotion Identification. In Proc. of
PASSAT, 2012, 587-592.

[22] Crawford, S. E. and Ostrom, E. A grammar of institutions. American
Political Science Review, 89, 03 (1995), 582-600.

[23] Triantaphyllou, E. Multi-Criteria Decision Making Methods.
Springer, 2000.

[24] Clark, B., Devnani-Chulani, S. and Boehm, B. Calibrating the
COCOMO II post-architecture model. In Proc. of ICSE, 1998, 477-480.

[25] Lafferty, J., McCallum, A. and Pereira, F. C. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
(2001).

View publication stats

https://www.researchgate.net/publication/303515399

	1. INTRODUCTION AND BACKGROUND
	2. FEATURE PRIORITIZATION
	2.1 Feature identification
	2.2 Attributes considered for prioritization
	The next step of the process involved the identification and extraction of attributes that can be used as the basis for prioritizing features for improvements. Three proposed approaches (discussed in the next subsection) were developed based on four d...
	2.2.1 Frequency
	2.2.2 Rating
	2.2.3 Emotions
	2.2.4 Deontics

	2.3 Three prioritization approaches
	2.3.1 Individual attribute-based approach
	2.3.2 Weighted approach
	2.3.3 Regression-based approach

	3. EVALUATION AND ASSESSMENT
	3.1 Individual attribute-based ranking
	3.2 Weighted ranking
	3.3 Regression-based ranking

	4. Discussion
	4.1 Comparison of the three approaches
	4.2 Implications
	4.3 Limitations and future work

	5. REFERENCES

