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ABSTRACT 
App reviews contain valuable feedback about what features 
should be fixed and improved. This feedback could be ‘mined’ to 
facilitate app maintenance and evolution. While requirements are 
routinely extracted from post-release users’ feedback in 
traditional projects, app reviews are often generated by a much 
larger client-base with competing needs and priorities and ad hoc 
structure. Although there has been interest aimed at exploring the 
nature of issues reported in app reviews (e.g., bugs and 
enhancement requests), prioritizing these outcomes for improving 
and evolving apps hasn’t received much attention. In this 
preliminary study we aim to bridge this gap by proposing three 
prioritization approaches. Driven by literature in other domains, 
we identify four attributes (frequency, rating, negative emotions 
and deontics) that serve as the base constructs for prioritization. 
Thereafter, using these four constructs, we develop three 
approaches (individual attribute-based approach, weighted 
approach and regression-based approach) that may help 
developers to prioritize features for improvements. We evaluate 
our approaches in constructing multiple prioritized lists of 
features using reviews from the MyTracks app. It is anticipated 
that these prioritized lists could allow developers to better focus 
their efforts in deciding which aspects of their apps to improve. 

Keywords 
App reviews; crowdsourcing; prioritization; requirements 
elicitation. 

1. INTRODUCTION AND BACKGROUND 
Determining the software features that users require is dealt with 
in the Requirements Engineering (RE) stage of the Software 
Development Life Cycle (SDLC). This activity is established to 
be quite challenging, as Brooks noted “the hardest single part of 
building a software system is deciding precisely what to build” 
[1]. While traditional and agile requirements elicitation processes 
involve users specifying the software requirements upfront or 
during the SDLC, that are then developed, apps are generally 
released with a  feature cohort that is subsequently expanded 
based on feedback available in the form of app reviews [2]. Also, 
unlike traditional and agile software developments where the 
feedback about post-release changes required come from the 
same client(s), requirements1 come from numerous clients in the 

                                                                 
1 In this work, we consider users’ requests for bug fixes, enhancements and new 
features logged in reviews (under the umbrella of improvements), as a form of 

app domain. These clients may have (conflicting) preferences 
about features that need to be fixed or enhanced. Furthermore, 
app reviews are usually voluminous and ambiguous [3] compared 
to users’ feedback provided in traditional and agile software 
projects. Thus, developers often need approaches to identify and 
extract these requirements from reviews, before prioritizing in 
which order they should be fixed. 

While there have been works studying the nature of complaints 
[4, 5] and identifying features of apps  that need to be improved 
[6], prioritization of features that need to be fixed hasn’t received 
much attention. To address limitations of well-known 
prioritization techniques such as analytic hierarchy process AHP 
that suffer from scalability problems [7], researchers have 
proposed new techniques such as clustering [8], case-based 
ranking [9], and the B-Tree method [10]. However, these 
methods are not suitable for prioritizing requirements from app 
reviews because of the volume of reviews that are logged by 
users, and the ensuing concerns (e.g., identifying and grouping 
issues from natural language text, and determining the severity of 
a problem). Also, these methods assume that clients have clear 
priorities and they participate in the prioritization process to rank-
order feature preferences. For example, the study of Laurent et al. 
[8] assumes that the identified requirements ‘clusters’ will be 
rank-ordered by clients, and the work of Avesani et al. [9] 
requires clients to be involved in the preference elicitation step. 
In contrast, in the app domain, there is no single client. Thus, app 
developers must face the challenging task of extracting a unique 
set of features from unstructured reviews that require action, and 
then subsequently employ suitable mechanisms for assigning 
priorities. 

In contrast, gathering feedback and assigning priorities are well-
structured in larger projects such as Android OS that receive 
voluminous feedback similar to the app domain. For example, the 
issues logged into appropriate categories (e.g., bugs and 
enhancements) are typically assigned priorities based on severity 
(e.g., low, medium and high) by a dedicated group of individuals 
with domain knowledge. However, in the app review domain, 
features need to be first extracted from unstructured reviews 
before undertaking prioritization. As noted above, this poses a 
challenge to development teams, and particularly those with 
limited resources. Also, the prioritization approach often needs to 

                                                                                                          
crowdsourced requirements, which aids software maintenance and product 
evolution. 
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consider aspects such as the prevalence of an issue (e.g., 
frequency of a reported enhancement request) amongst the user 
population, and the seriousness of an issue (e.g., a feature not 
working versus a feature needing to load faster). Some app 
development firms employ community managers [11] who 
(manually) monitor and analyze app reviews, identify issues, 
respond to customers, and also raise issues that need to be fixed 
to the development team, thus contributing towards the 
prioritization process. Though beneficial for community 
engagement [11], apart from being tedious and time consuming, 
this may not be affordable for small groups of app developers. 
These issues call for structured approaches to prioritize features 
for improvements logged in app reviews (following a data-driven 
perspective).  

How can we use data-driven approaches to prioritize features 
for improvements extracted from user reviews? To answer this 
question we have developed three approaches which are likely to 
reduce the amount of manual work required in prioritizing 
features for improvements. Although preliminary, we anticipate 
that these approaches may have utility for app developers, and 
may also stimulate research interest. 

The rest of the paper is organized as follows. In Section 2 we 
describe the three specific approaches for prioritizing features for 
improvements. In Section 3, we conduct an evaluation to assess 
the suitability of our approaches using reviews from the 
MyTracks2 app. In Section 4 we compare the three approaches, 
highlight the implications, and review limitations and future 
work. 

2. FEATURE PRIORITIZATION 
In this section, we first discuss the steps to identify features that 
need to be fixed from app reviews. We then discuss how the four 
attributes considered for prioritization are identified. Finally, we 
discuss the three prioritization approaches. 

2.1 Feature identification 
We first extracted the latest 4,442 reviews for the MyTracks app 
from the Google Play Store using Google API. We had 
previously employed other text mining techniques in studying 
reviews from this app, so it was convenient to use these reviews 
to evaluate our prioritization approaches [12]. Each review 
contained a title, review comment (which may identify bug fixes, 
enhancements and new features) and the rating provided by the 
user. We followed earlier work [3, 12] which show that multiple 
issues may be reported in one review, and conducted our analysis 
at the sentence-level.  Thus, each review was parsed into 
sentences, based on a set of delimiting characters (e.g., ‘.’ and 
‘!’). The next step was to identify the sentences that met the 
criteria for the study. Since our focus was to study features that 
need improvements, we include those sentences that were a part 
of reviews that had low ratings (i.e., =< 3, similar to [13]). We 
also anticipated that sentences that contained negative terms and 
emotions would highlight users’ dissatisfaction with app features, 
and these were tagged for analysis. This pre-processing resulted 
in 1,271 sentences for the MyTracks app (out of a total of 8,623 
sentences from 4,442 reviews), which were used for further 
analyses. Prior work has shown that important features discussed 
in the reviews can be extracted using Part-of-Speech (POS) 
tagging [14] and N-gram analysis [15] techniques. In this work, 
we employ these well-known techniques and identify nouns in 
sentences to represent features that need to be fixed, similar to 
the work in [14, 16].  

                                                                 
2https://play.google.com/store/apps/details?id=com.google.android.maps.mytracks 

2.2 Attributes considered for prioritization 
The next step of the process involved the identification and 
extraction of attributes that can be used as the basis for 
prioritizing features for improvements. Three proposed 
approaches (discussed in the next subsection) were developed 
based on four different attributes of app reviews—frequency, 
ratings, negative emotions and deontics. These four attributes are 
derived from literature in three different domains. The first two 
are characteristics that have been used in a range of works in app-
review mining in different contexts [13, 14, 17]. Guzman and 
Maalej’s [14] study used feature count (frequency) to identify 
important features, and Fu et al. [13] used the rating of reviews to 
detect inconsistent comments (i.e., if there was discrepancy 
between rating provided and the sentiment expressed in review 
comments). The negative emotion and deontics attributes were 
derived from psychological [13] and sociological literature 
respectively [18]. We discuss these four attributes and justify 
their selection in this work below. 
2.2.1 Frequency 
Frequency (or count) of a feature can reveal the magnitude of the 
problem associated with that feature [14]. In this work the 
frequency is computed by checking whether a given feature (e.g., 
battery) is present in each of the sentences. If the feature is 
present, its count is incremented. Each feature is searched for 
only once in the sentences. The features are then rank-ordered 
using the count measure. 

2.2.2 Rating 
The rating attribute is based on the rating score (one to five) 
provided by app users when rating the app. For each feature that 
appears in the sentences, a running sum of the rating that 
sentence received is calculated, and then the average is found 
based on the number of times it appears. The feature with the 
lower rating would receive a higher priority. 

2.2.3 Emotions 
Psychologists have analyzed emotion expressed in text using 
categories identified by Parrott [19], who identified over 100 
emotions and classified them into the primary emotion 
categories—anger, fear, joy, love, sadness, and surprise. 
Research has revealed that negative emotions such as anger, 
sadness and fear could signal discontent of users [13]. Thus, we 
consider words that belong to the three negative categories 
(sadness, anger, and fear) in our analyses. The words for our list 
of emotions were obtained from the LIWC dictionary [20], and 
from word lists used in other emotions-based research [21]. 
Words from the LIWC categories for sadness, anger, and anxiety 
(i.e., fear) were used. Features mentioned in sentences were 
queried for their association with the words in each of the 
emotion words in the lists. If a feature was present along with a 
word from a category, the count was incremented for that 
category. The feature with the higher count of negative emotions 
increased in priority. 

2.2.4 Deontics 
Sociologists investigating social-media data to obtain insights 
have noted that deontic terms such as ‘must’, and ‘must not’ are 
used to indicate the persuasiveness of a message [22], signaling 
obligations and prohibitions respectively [18]. For example, the 
sentence “this exercise tracking app must not ask for my contact 
details” indicates that the user is strongly against the app 
requiring contact details. These deontic terms may be useful in 
determining the urgency with which features should be fixed. We 
constructed a dictionary containing the modal verb phrases for 
prohibitions and obligations respectively. The number of times 



features were mentioned along with a deontic term (prohibitions, 
obligations) in a review sentence was computed. The feature with 
the higher count of deontic terms would obtain a higher priority. 

2.3 Three prioritization approaches 
We review our three prioritization approaches in this subsection. 

2.3.1 Individual attribute-based approach 
In this approach, each attribute is examined individually. For 
example, when ranking features based on frequency count, the 
ratings are not considered. This approach may be useful where 
developers are interested in only particular attributes, such as the 
ratings. This silo-approach would enable developers to obtain a 
quick overview of the priorities based on how users perceive 
their various app features based on a specific criteria (e.g., 
rating), without needing to look at the other attributes. The 
usefulness of such an approach has been demonstrated using the 
frequency approach in app-review mining and other relevant 
domains [13, 14].  However, the limitation of this approach is 
that it forgoes potential insights that could be obtained through an 
integrated approach involving specific combination of attributes. 
This is the main focus of the weighted approach, introduced next. 

2.3.2 Weighted approach 
This approach enables the consideration of two or more attributes 
in the prioritization process by allowing them to be combined. 
The weighted approach that we propose here is based on prior 
research in Multi Criteria Analysis (MCA) [23] that is used to 
find the optimal choice between different alternatives. A method 
of MCA is the Weighted Sum Model. In this approach, the values 
for each criterion (e.g., rating and frequency) must first be 
normalized so they become comparable. Weights are then 
assigned to each criterion to show their relative importance. 
These weights are multiplied by the values of the corresponding 
attribute, and then added together to determine the weighted 
model score. These scores are then used to rank the different 
alternatives considered. 
All four attributes (frequency, ratings, negative emotions and 
deontics) can be combined, to produce the priority for feature i 
using the formula 
𝐏𝐏(𝐢𝐢) =  𝐂𝐂𝐂𝐂 ∗ 𝐅𝐅(𝐢𝐢) +  𝐂𝐂𝐂𝐂 ∗ 𝐑𝐑(𝐢𝐢) +  𝐂𝐂𝐂𝐂 ∗  𝐄𝐄(𝐢𝐢) +  𝐂𝐂𝐂𝐂 ∗  𝐃𝐃(𝐢𝐢)          (1)          

where, F(i) is the normalized frequency of the chosen feature, 
R(i) is the normalized average rating for the feature, E(i) is the 
normalized emotion count for the feature, and D(i) is the 
normalized deontics count for the feature. C1 to C4 are the 
weights associated with the attributes where the sum of the 
weights is 1. The attribute considered to be of higher importance 
would receive a higher weighting. This enables the priority value 
for all features to be computed, based on which the features may 
be ranked. 
The values of each of the four attributes are normalized to a scale 
of 0 to 1 by applying the well-known formula given in Equation 
2, before they are used in Equation 1. The normalized score of a 
feature i is given by Norm (i), where xi represents the attribute 
score of feature i (i.e., the feature under consideration), xmax and 
xmin correspond to the maximum and minimum scores among all 
features considered (for a given attribute). 

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 (𝐢𝐢) =  (𝐱𝐱𝐢𝐢  −  𝐱𝐱𝐍𝐍𝐢𝐢𝐦𝐦) / (𝐱𝐱𝐍𝐍𝐦𝐦𝐱𝐱  −     𝐱𝐱𝐍𝐍𝐢𝐢𝐦𝐦)          (2)     

It should be noted that the approach can be customized by 
practitioners depending on their experience. For example, if they 
consider that frequency and rating are the two important 
attributes to consider then C3 and C4 can be assigned a value of 
zero. Also, it should be noted that the formula in Equation 1 
provides the ability for a human-user to specify weights for each 

attribute considered based on which attribute may be more 
important to a developer (or a development team). These weights 
could come from domain knowledge, and/or the experience of 
the team. The inclusion of this human aspect may be beneficial in 
the rapidly changing app domain as humans may have insights 
derived from a range of apps which can be used to assign weights 
(instead of considering just one app). Thus, this approach is a 
blend of data-driven bottom up approach (i.e., use of values 
obtained for attributes from the reviews) and a top-down 
approach (i.e., specification of weights for individual attributes 
based on prior knowledge). 

2.3.3 Regression-based approach 
The third approach is a pure data-driven approach where the 
investigation aimed at examining influential variables for 
determining the severity of reviews, and thus, urgency with 
which a feature should be fixed. We employed multiple 
regressions where the regression equation used for the prediction 
of a dependent variable (Y) is given by Equation 3. Here, b0 is a 
constant, b1 is the coefficient of the first predictor variable (x1) 
and bn is the coefficient of the last predicator variable (xn). 

𝐘𝐘 =  𝐛𝐛𝟎𝟎 + (𝐛𝐛𝐂𝐂 ∗ 𝐱𝐱𝐂𝐂) + (𝐛𝐛𝐂𝐂 ∗ 𝐱𝐱𝐂𝐂)+ . . . +(𝐛𝐛𝐦𝐦 ∗ 𝐱𝐱𝐦𝐦)       (3) 

Using the regression approach, we pursued two small studies. In 
both the studies, there were a total of 25 independent variables. 
These were: (a) top-20 feature counts (i.e., top-20 features based 
on frequency attribute), (b) emotion category counts (three forms 
of emotions – sadness, anger and fear) and (c) deontic category 
counts (two such categories – obligations and prohibitions). 

In the first study, the dependent variable was the rating. The 
objective here was to investigate whether a model that can 
predict the rating can be constructed based on the 25 independent 
variables. If such a model can be constructed, then the correlation 
coefficients of the statistically significant variables (e.g., b1 and 
b2 in Equation 3) can be used as the basis for prioritization. The 
higher the coefficient for a particular statistically significant 
variable (i.e., a feature), the higher is its influence on the 
dependent variable. Hence, such a feature would have a higher 
priority for fixing. In the second study we changed the dependent 
variable. Instead of rating, we used a tag that was assigned by 
independent raters, where the tag represented the severity (or 
urgency) of fixing a problematic feature from a scale of 0 to 3. A 
tag of ‘0’ was given to sentences where valuable or actionable 
information (i.e., features with issues) was not identified. A tag 
of ‘1’ was given to sentences that contained suggestions for 
enhancement, a tag of ‘2’ for problems with the functioning and 
performance of the core features of the app, and a tag of ‘3’ for 
severe problems where an app feature was unusable. Based on 
these guidelines, independent coders (PhD students in 
computing) familiar with app development were asked to 
examine each of the negative sentences, and rate the severity of 
the problem, from the perspective of an app developer. 

Note that the first study does not include any additional 
information from the humans (i.e., all the variables are inferred 
from the app review dataset). In contrast, the second study brings 
human into the loop to assign tags indicating the severity of a 
feature that needs to be fixed (but not for prioritizing features). 
The two analyses were undertaken to scrutinize if there is a 
difference in the regression analyses of the human-coded 
evaluation (study 2) and the data-centric evaluation (study 1). 
The result of this analysis can inform the suitability of these two 
types of regression approaches for the prioritization process. We 
examine the suitability of this and the other two approaches in 
our evaluation presented next. 



3. EVALUATION AND ASSESSMENT 
This section presents the results obtained from the three 
prioritization approaches for the MyTracks app. MyTracks is an 
exercise tracking app available from the Google Play Store, 
which records the user’s path, speed, distance, and elevation 
while they walk, run, and bike. While recording, users can view 
their data live, annotate their paths, and hear voice 
announcements of their progress. The app also allows users to 
sync and share their tracks with friends via Google Drive, and 
social media sites, such as Facebook. It also integrates data from 
heart rate monitors developed by certain external vendors. The 
results of the three prioritization approaches for 1,271 negative 
sentences (obtained using the process discussed in Section 2) are 
presented in the following subsections. 

3.1 Individual attribute-based ranking 
Given space restrictions, the top-10 features based on the 
frequency-based ranking and emotion-based ranking approaches 
are shown in Table 1 (out of 57 features identified for the app). 
From the frequency based ranks (columns 1-2), it can be 
observed that the feature gps was found to be the most mentioned 
feature within the negative review sentences, with a count of 169. 
The feature track was a close second, with 168. This is intuitive 
as it is an exercise app that uses GPS to track users’ fitness. Users 
who have problems with the main features that the app claims to 
provide would voice their concerns when their expectations are 
violated. This can be seen in reviews such as “the application 
keeps hanging so the track is lost”. Map, which has a count of 
109, was the feature ranked next. The obvious issues with this are 
problems with the mapping of their tracks, as shown by “maps 
usually not appear on my track”. However, these instances may 
have also arisen due to issues related to the integration with 
Google Maps, which is a functionality that the app advertises. 
The next two features correspond to the tracking of the time taken 
to complete a workout and the nature of the data recorded. The 
common problems included the inaccuracy of the time being 
recorded and the data being lost or inaccurate. 

Table 1. Prioritization using frequency and emotion 
attributes 

rank Frequency Emotion 

feature count feature count 

1 gps 169 gps 240 

2 track 168 track 228 

3 map 109 map 162 

4 time 79 time 103 

5 data 58 data 76 

6 battery 51 signal 70 

7 file 50 file 64 

8 signal 49 package 63 

9 package 48 battery 61 

10 distance 41 speed 52 

Emotion-based ranking tells a slightly different story (columns 4 
and 5 of Table 1). While the top-five features retain the same 
ranking as frequency, the rank-orders of the other features are 
different. Also, the feature distance does not appear in the 
emotion-based ranking which is replaced by speed in this 
ranking. An implication of using this silo-approach is that, if 
prioritization is based on a different attribute, the same team will 
prioritize features differently. We posit that this approach will be 
beneficial for a team to compare the ranks from different 
attributes to obtain an understanding of the top-problematic 
features that are consistent across all attribute-based ranking 
schemes. For example, if the top-5 features appear to be 

consistent in all these ranking mechanisms, the team can 
confidently go ahead with improving those features for the next 
iteration. 

3.2 Weighted ranking 
To demonstrate the operationalization of the weighted approach, 
we consider the use of frequency and rating attributes (instead of 
all four attributes shown in Equation 1). Table 2 shows the results 
involving the two attributes with three different weight 
combinations. Columns 3, 5 and 7 show the priority values for 
three different combinations of weights for C1 and C2 [0.5 & 0.5, 
0.7 & 0.3, 0.3 & 0.7]. When both frequency and rating have the 
same weights, track, gps, and map appear to be the top three 
ranked features. This is also the case when frequency has a 
higher weight than rating. However, when rating is given more 
importance, design and sharing are among the top three ranked 
features, while map ranks 6th. 
Table 2. Ranks for weighted approach (frequency and rating)  

rank P= (0.5*F)+(0.5*R) P=(0.7*F)+(0.3*R) P=(0.3*F)+(0.7*R) 

feature priority feature priority feature priority 

1 track 0.72 track 0.83 design 0.70 

2 gps 0.70 gps 0.82 sharing 0.62 

3 map 0.58 map 0.60 track 0.61 

4 design 0.50 time 0.46 gps 0.58 

5 sharing 0.46 data 0.37 export 0.56 

6 time 0.45 speed 0.34 map 0.55 

7 export 0.41 battery 0.33 calorie 0.51 

8 speed 0.40 distance 0.32 kml 0.50 

9 route 0.39 file 0.32 route 0.50 

10 calorie 0.38 signal 0.31 file 0.50 

There were a total of 16 unique features that appeared in the top-
10 lists (in Table 2). Out of the 16, 3 appeared in all three (track, 
gps and map), 8 appeared in two lists and 5 appeared in only one 
of the three lists. It is interesting to note that the results for 
weighting scheme 2 (C1=0.7 and C2=0.3), shown in column 4 of 
Table 2, is similar to the results shown in column 2 of Table 1. 
When comparing the two columns, the ranks for the first two 
features are reversed, but otherwise the other features in the top-5 
are consistent. Only one of the 10 features differs (speed appears 
in Table 2 vs. package in Table 1). However, the ranks for the 
features in the bottom half of the lists are different. These results 
show that the weights chosen will significantly impact the 
features that are selected for prioritization (i.e., financial gains or 
market share could be foregone by not choosing the right 
weights). 

3.3 Regression-based ranking 
While the weighted approach involves experts knowledgeable in 
the domain of investigation, which in many cases may be 
available within an organization, and has also been demonstrated 
in other examples in software engineering (e.g., customizing and 
fine-tuning COCOMO models [24] based on organizational data 
and experience), we now investigate if important features can be 
inferred purely based on a data-driven approach. We examine the 
outcomes of the two types of regression analyses conducted next. 

The first study used the rating provided by the app-reviewers as 
the dependent variable. The multiple regression conducted 
produced a regression model with six significant variables out of 
25 (p<0.05): route, widget, package, speed, map and anger.   
Despite returning a significant model however, the six variables 
only accounted for 3% of the variation in rating. 
In the second study, tags were assigned by independent coders 
who examined the review sentences from the viewpoint of 



developers (as discussed above). For the MyTracks app, there 
were four coders who coded the 1,271 sentences (a four-way 
split). The interrater reliability (based on 100 sentences coded) 
for the study using the intraclass correlation coefficient (ICC) 
[22] metric was 0.84 (indicating 84% agreement). From the 
regression analysis with tags as the dependent variable, a 
significant model emerged (F22.48 = 20.04 with p < 0.01). The 
Adjusted R squared value accounted for 20% of the variance in 
the urgency to fix certain features (compared to 3% for the first 
study). The 10 statistically significant features (out of 25) from 
this analysis are shown in Table 3. 

Table 3. Significant features from regression analysis 
Rank Feature Coefficient Rank Feature Coefficient 
1 package 1.17* 6 gps 0.61* 

2 battery 0.91* 7 accuracy 0.46** 

3 download 0.69* 8 file 0.46* 

4 elevation 0.67* 9 speed 0.42* 

5 distance 0.62* 10 track 0.39** 

Note: ** = p<0.01, *=p<0.05 

The magnitudes of the coefficients of the statistically significant 
variables indicate the priority for fixing that feature. The higher 
the coefficient, the higher is its impact in influencing the 
dependent variable (i.e., tag). The result suggests that the feature 
package should be given the top-priority. This is because one unit 
increase in the package variable increases 1.17 units of the tag 
variable. This suggests those sentences that had high tag values 
(say 3, which indicates high severity) had more instances of 
package appearing in them as compared to those that were tagged 
lower (say 0 or 1). Hence, package is ranked the highest. Our 
manual verification revealed that the majority of reviews that 
contained the word ‘package’ were complaining that the app had 
indeed become unusable. In the frequency-based ranking of 
features (Table 1), package was ranked 9th, with a count of 48. 
This suggests that package may be more influential in improving 
the outcome of the review than can be observed just by looking at 
the frequency. So, the regression analysis has revealed insights 
that may not be obvious. This pattern may also be observed when 
looking at the features gps, track, and map. These appeared to be 
the most problematic features from the frequency-based ranking. 
However, the regression results suggest there are other more 
problematic features such as package, battery and download. 

Looking at the features that exist in both the top-ranked features 
from frequency-based ranking and this regression outcome 
(Table 1 and Table 3), package, battery, distance, gps, file, and 
track (a total of 5 features) exist in both. This suggests that the 
individual attribute-based ranking that considers the frequency 
attribute is closely aligned with the regression results using tag as 
the dependent variable. Additionally the results using tag as the 
dependent variable is closer to the weighted approach (with 7 
matches out of 10 – but with different rank-orders) where the 
values of C1 and C2 for the frequency and rating attributes are 
0.7 and 0.3 respectively, than the other two weight-combinations 
considered (on comparing Table 3 and Table 2). This shows that 
the weighted approach is closer to the regression-based approach 
than just the frequency based approach. 

4. DISCUSSION 
The research question addressed in this work is: How can we use 
data-driven approaches to prioritize features for improvements 
extracted from user reviews? Based on inspirations from the 
literature on app-review mining, psychology and sociology this 
paper identified a set of four attributes – frequency, rating, 
emotions and deontics. These were used to construct three 

prioritization approaches (individual attribute-based approach, 
weighted approach and regression approach). Using MyTracks as 
a case study, it was shown that the three approaches can be used 
to prioritize feature improvements. However, there are relative 
strengths and weaknesses of these approaches and these are 
discussed below. The subsequent subsections highlight the 
implications of our outcomes, and the limitations and future 
work. 

4.1 Comparison of the three approaches 
The individual attribute-based approach is a silo prioritization 
approach (or subset of the weighted approach) where a single 
attribute is considered for prioritization. The approach can be 
used in two ways. First, it enables developers to prioritize 
features based on what they consider to be the most important 
attribute (similar to what has been adopted elsewhere [13, 14]). 
Second, by enabling the possibility of investigating all the four 
silo-rankings for the same features it facilitates the comparison of 
rankings. This could enable developers to make informed 
decisions about which features to prioritize (e.g., choosing 
features that appear in all the four ranking schemes). So, we 
propose the use of this approach for exploratory purposes, since it 
may miss potential insights that can be revealed by combining 
different attributes. 
The weighted approach allows different attributes to be 
considered (in various combinations) that are deemed significant 
by development teams. As certain attributes of reviews may be 
more important to developers than others when prioritizing 
features for improvements, practitioners need an approach that 
can serve as a ‘what-if’ scenario analyzer. This is achieved by 
considering only those attributes that are considered to be 
relevant (in Equation 1) and also adjusting the weights of 
attributes.  It should be noted that the approach values human 
expertise and experience by soliciting weights of different 
attributes that are combined. As development teams become 
more experienced (e.g., through domain knowledge gained in 
building several apps in the same genre, say games), we posit that 
the assignment of weights should become less cumbersome. For 
example, the success of choosing a particular weight in the 
prioritization of feature improvements for an early iteration may 
be used to determine the weights for subsequent iteration(s). 
Though the weighted approach can be beneficial for development 
firms with expertise in the app domain, startups and small app 
development firms may lack such knowledge, and a pure data-
driven approach might be useful for them. We suggest the use of 
the regression based prediction approach as a bootstrap 
mechanism to compensate for the lack of expertise. The use of 
this approach over time can be used to identify the features that 
tend to routinely run into problems and mitigation strategies 
could be planned. Another advantage of the data-driven approach 
is that it might provide specific ‘micro-insights’. Often, 
knowledge within the development firm is based on common 
trends observed over time (i.e., macro-insights). However, 
emerging micro-trends (i.e., new problematic features) may not 
have yet become the common knowledge, and hence, the 
weighted or attribute-based approaches may not be suitable to 
infer those. For example, certain features in a released version of 
an app can quickly run into problems causing discontent among 
users. These should thus be swiftly identified and prioritized for 
improvements. We indeed observed this issue for MyTracks 
latest release.  Some users complained about the app not working 
after upgrading to Android 5.1 Lollipop. Also, some users 
complained about a specific brand of heart rate monitor (Polar 
H7 monitor) not working with the latest version of the app 
despite the support indicated. These users promptly provided 



poor ratings (rating =< 3). Since these two cases may have 
affected only a small proportion of users, they do not appear in 
the top-10 frequency-based list. However, these would be 
identified more easily by the data-driven approach when 
compared to the other two approaches, since the regression 
approach identifies priorities based on correlations. Thus, the 
regression approach appears to possess the most promise of the 
three. Having said that, we have shown the result using the 
weighted approach is in fact closer to that of the regression 
approach (refer to Sections 3.2 and 3.3). However, there is a 
requirement to select the ‘correct’ weights based on expertise. 

4.2 Implications 
This work contributes to research efforts aimed at enabling 
requirements prioritization in the app development domain by 
proposing three approaches. These approaches provide a layer of 
abstraction that hides low-level details from the developers, 
where they do not need to look at app reviews directly to identify 
app features for improvements. Instead, they may use the 
proposed approaches to determine which aspects of their app to 
enhance or fix next. More broadly, our approaches can 
complement those that identify features from reviews (e.g., 
Android OS reviews) [6, 16], in going one step further to help 
with prioritization. 
These approaches could be of utility to practitioners. The three 
approaches presented above are complimentary in nature. 
Developers may use our approaches as part of a two-stage 
prioritization process. The individual attribute-based approach 
may be used for exploratory investigations of troublesome 
features, followed by either the weighted approach (contingent to 
prior experience) or a data-driven regression approach (subject to 
lack of experience). The latter approach is also useful for 
bootstrapping feature prioritization, and identifying micro-trends 
of features that need urgent attention. 

4.3 Limitations and future work 
Our study considered reviews which had a rating of =< 3, in line 
with previous studies [13]. However, there could be some 
sentences that contain problematic features in reviews with 
ratings of 4 or 5, which may have been missed, a threat to the 
validity of our approach. Our evaluation results have been 
presented for one case study, which affects the work’s 
generalizability. We intend to conduct further evaluations in 
different app domains (e.g., games and health apps) to examine 
the domain-specific insights about features that need to 
prioritized for improvements. 
We intend to experiment with machine learning algorithms (e.g., 
Conditional Random Fields [25]), for automatically tagging large 
amounts of reviews. Such approaches would require developers 
to tag only a small subset of reviews, which will then be used as 
input to automated review tagging. Furthermore, there is scope to 
create a toolset for extracting reviews from the Google Play 
Store, and parsing these to prioritize features for improvements. 
We will also consider issues associated with features during the 
prioritization process (e.g. time being inaccurate).  
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