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Abstract. Most work on convention propagation have focused on single-layer
networks. This work a) highlights the need for studying convention propagation
in multi-layer networks, b) presents results comparing the speed of convention
propagation in single-layer vs. multi-layer networks and c) demonstrates the role
of influencer agents in convention propagation in multi-layer networks.

1 Introduction

The impact of different configurations of networks on the spread of information, ru-
mours, norms, diseases etc. is being studied in many disciplines including sociology
and epidemiology. Several other domains such as traffic management and marketing
have benefited from the use of network propagation principles to their advantage. For
example, the knowledge of network principles have been used in re-routing passengers
arriving in a central hub that provides different modes of transport [5]. Marketing per-
sonnel could identify paths in networks that can expedite the faster uptake of a particular
product [1,2]. In this paper, we are interested in the spread of conventions as studied in
the field of normative multi-agent systems (NorMAS) using simulations [10].

A simple view of networks categorizes networks into single-layer and multi-layer
networks. A multi-layer network consists of many layers where a node (or nodes) in
one of the layers might also be present in the other layers. There have been a wide-
range of studies on the characteristics of different types of single-layer networks such
as random, small-world and scale-free networks (see [7] for an overview). Researchers
in NorMAS have investigated how conventions propagate in single-layer networks [3,
11]. However, the characteristics of information diffusion in multi-layer networks has
attracted researchers’ attention only recently [4, 8] in various domains. In MAS, the
interest in exploring the applicability of multi-layer networks has been very recent [6]
and this paper investigates the spread of conventions on top of multi-layer networks.

2 Single vs. multi-layer networks

This section aims to present an overview of single vs. multi-layer networks to highlight
the need for studying convention propagation in multi-layer networks.

A single-layer network normally refers to individuals connected in a particular con-
text such as work and hobby. Nowadays, it is estimated that an average individual is a



member of more than one social network. For example, an individual may be a part of
LinkedIn, Facebook and Google+ networks. Each network can be considered as a layer.
So, an individual who has an account in all the three networks is a part of a three layer
network. However, the nodes an individual is connected to in a particular layer will be
different. An individual in a multi-layer network can spread the information from one
network to other networks.

Fig. 1. An example of single and multi-layer networks

Figure 1 shows an example of single- and multi-layer networks. The single-layer
network on the left shows the structure of a community where individuals are modelled
as nodes and their relationships are shown as links (or edges). The multi-layer network
on the right shows the different layers of relationships between individuals in a com-
munity. The first layer L1 could correspond to a social network between members on
Facebook and the second layer L2 could be the Word of Mouth (WoM) network in the
community. The dotted lines indicate that the nodes in L1 and L2 are the same individ-
uals. It can be observed that not all nodes are connected to others in the same layer. For
example nodes 5 and 7 are connected in L2, but not in L1. It can be observed that L1
and L2 can be superimposed to create the single-layer network on the left. Superimpo-
sition here implies the graph sum1 of L1 and L2. If L2 is superimposed on top of L1,
we get the same nodes (all seven) and the eight links (all links in L1 and L2 with the
elimination of duplicates). The superimposition of L1 on top of L2 will yield the same
result. So, the order of superimposition does not matter.

Most work that consider network topologies have restricted themselves to a single-
layer network where the differences in influences of nodes that are spread across differ-
ent layers have not been investigated. For example, nodes 3 and 4 are only connected

1 A brief description of graph sum can be found at
http://mathworld.wolfram.com/GraphSum.html



in L1 and not in L2. These two nodes represent individuals that are further apart (phys-
ically) but are connected through an online social network. Such differences are often
ignored in single-layer networks that aggregate different layers into one through super-
imposition of layers, since the aim of these networks is to provide a simplified view
of relationships in a community. However, differentiating different layers of networks
is important because people are connected to each other through a range of networks
and the layered structure has a significant impact on the dynamics of information prop-
agation in a community of agents such as the speed of convention propagation and the
extent of spread in a network.

In what follows, we compare the speed of information propagation of single and
multi-layer networks. The speed of information propagation between two nodes is re-
ferred to as cascade time (CT) in a network and is measured in hop lengths. Using the
simple example shown in Figure 1, we compare the CTs in the two types of networks.
Table 1 shows the CTs between two nodes in five different network settings. Assuming
that the time taken for information propagation between two adjacent nodes that are
connected is one, the CT for the path from nodes 4 to 5 in single-layer network (SL)
is 5. The information propagation from nodes 4 to 5 is unachievable in L1 or L2 alone
because there is no path between the two.

Each layer in a multi-layer network has certain properties. Medium delay (Dm)
represents the time taken for a piece of information to flow between two adjacent nodes
in a given layer. For example, the Dm in WoM networks is generally greater than online
networks such as Facebook or Twitter. When information propagates across layers from
the same node, there would be a delay because of medium switch (Ds). For example,
Ds captures the time to transfer a message from Twitter to Facebook or from a WoM
network to Twitter. The CT between nodes a and b is given by:

CTab =

x∑
i=1

Dm(L1) +

y∑
j=1

Dm(L2) +

z∑
k=1

Ds (1)

where x represents the number of links in layer 1 through which information prop-
agates, y represents the number of links in layer 2, and z represents the node switches
between the two layers.

Using the formula presented above, we compute the CT along the path from node 4
to 5 in the multi-layer network shown in Figure 1 under three varying circumstances.

Case 1: ML0 represents a multi-layer network where Dm=1 between two adjacent
nodes in both layers (L1 and L2) and there is no medium switch delay (Ds=0). Let us
assume that the information originates in node 4 in L1. In order for this information to
be spread to node 5, this information needs to cross layers (i.e. L2 to L1 at node 2). The
path followed in L1 would be 4-3-1-2. So, the sum of Dm along the path from 4 to 2 in
L1 is 3. The information needs to cross layers since a path exists in L2 between nodes 2
and 5. The path followed in L2 is 2-7-5. So, the sum of Dm along the path from nodes
2 to 5 in L2 is 2. The sums of Dm for the path from nodes 4 to 5 is 5. Since Ds is zero,
CT45 is 5.

Case 2: ML1 represents a multi-layer network where Dm=1 between two adjacent
nodes in both layers L1 and L2 and the medium switch delay is one (Ds=1). In this



Cascade time SL L1 L2 ML0 ML1 ML2

CT45 5 - - 5 6 8
CT67 3 - 4 3 4 5

Table 1. Cascade times along two different paths in five different network configurations

case CT between nodes 4 and 5 becomes 6. CT for ML1 is one unit higher than ML0

because of the network switch at node 2.
Case 3: ML2 represents a multi-layer network where Dm=1 in L1 and Dm=2 in L2

and medium switch cost (Ds=1). This models a case where medium delays are different
in different layers (e.g. the medium delay cost in Twitter might be 1 and for WoM might
be 2). In this case, the CT between 4 to 5 rises to 8. The Dm along the path between 4
to 2 in L1 is 3. The Dm along the path between nodes 2 and 5 in L2 is 4. The medium
switch delay at node 2 is 1. So, CT45 in this case is 8.

The same type of calculations for information propagation between nodes 6 and 7
(where origin is node 6 of L2) are presented in the second row of the table. The three
cases presented above demonstrate that multi-layer networks are at best equal to single-
layer networks (case 1) and most often are slower than single-layer networks (cases
2 and 3). Multi-layer networks are often slow in information propagation because the
spread is influenced by the nature of the underlying medium and/or the network switch
delays across layers.

3 Experimental model

In this section, we discuss how to construct different types of network topologies and
also model how conventions propagate on top of these networks.

We employ a simple contagion spreading model for the study of convention propa-
gation. Similar to the spreading of a contagion such as a virus, a convention propagates
from one node to another if one of them has the convention and there is an edge con-
necting the two. For example, if node A is connected to five other nodes, then, upon
adopting a convention, node A spreads the convention to other agents. In the next time
step, all the five nodes adopt the convention. This simple model has been used so as
to focus on the dynamics of convention propagation in different types of networks. A
similar contagion-based model has been used to study convention spreading [9].

While there have been multitude of models for generating single-layer networks
(see [7]), there are relatively few approaches used in the literature to model multi-layer
networks. Two approaches used are the merging and the splitting approaches where a
multi-layer network is built by either merging two simple networks or splitting a simple
network into multiple networks [6]. We employed the splitting approach in this work.

A splitting approach for the generation of multi-layer networks - We created
an initial single-layer network consisting of certain number of agents (e.g. 100). Three
types of networks were considered - Erdos-Renyi (ER) random network, Watts-Strogatz
(WS) small-world network and Barabasi-Albert (BA) scale-free network. Once a single-
layer network is generated, in order to create the multi-layer network consisting of two-
layers, we duplicated all the nodes in the single layer in both layers of the multi-layer



network. Then using the two splitting mechanisms (type 1 and 2) discussed below we
assign the links to the two-layers.

Type 1 - For type 1, edges from the single-layer network are split between the two
layers of the multi-layer network using a pair of probability values. For example, let us
consider values 0.1 and 0.9. For each edge in the single-layer network a random number
between 0 and 1 is generated. If the random number (r) is less than 0.1, a new edge is
created in layer 1. Else if r is between 0.1 and 0.9 a new edge is created in layer 2.
Else, the edge goes in layer 1 or layer 2 based on generating a new probability value
between 0 and 1 (i.e. if the new value is less than 0.5 the link goes to layer 1 or else it
goes to layer 2). Using this approach, an edge is assigned only to one of the two layers.
This splitting mechanism generates interdependent networks. Nodes in these type of
multi-layer networks remain in a single layer but send information back and forth to
other layers.

Type 2 - These multi-layer networks differ from type 1 in that they allow duplication
of edges between the two layers (i.e., the same link between any two nodes of the single-
layer network can exist in different layers). The else part of the condition in Type 1 is
modified. If the random number r is greater than or equal to 0.9, then the edge is added
to both layers. So, there is a 10% chance that each edge is present in both the layers.
Type 2 models modern social networks where the same individual in a community can
belong to two different networks and can be connected to the same member(s) of the
community in both of these networks.

To study the spread of conventions, we choose a certain number of individuals who
are the originators of conventions (or norm entrepreneurs). In the experiments we con-
ducted, we measured the time taken for a convention to spread from this originator to
the entire network.

4 Experiments

In this section we describe the experiments conducted to compare the speed of conven-
tion propagation in two different networks and the role of influencer agents on conven-
tion propagation.

4.1 Convention propagation speeds in single- vs. multi-layer networks

Section 2 shows that the cascade times along certain paths are slower in multi-layer
networks than single-layer networks. In this experiment we empirically investigate the
average cascade times for convention convergence in the whole network. For the single-
layer network, we randomly chose an agent as the norm entrepreneur which starts prop-
agating the convention. We first generated a particular type of network (e.g. Erdos-
Renyi (ER) network) with 100 nodes. Then for each network, we conducted 10 exper-
iments. In each experiment a randomly selected node becomes the norm entrepreneur.
We conducted experiments on 100 networks of the same type (i.e. ER network). In total
1000 experiments were conducted. Also, we conducted similar experiments for small-
world and scale-free networks. We measured the average time taken to reach a 100%
convergence.



Multi-layer networks were also initialized using a similar approach. Convergence
times were measured for multi-layer networks that were generated using Type 1 and
Type 2 mechanisms. We investigated Types 1 and 2 using three different pairs of prob-
ability values for edge assignment. These were a) 0.1 and 0.9, b) 0.3 and 0.7 and c) 0.5
and 0.5. The experiments for multi-layer networks for different probability value pairs
are named Types 1a, 1b, 1c, 2a, 2b and 2c (6 experiments).

The experimental results for a Watts-Strogatz (WS) small-world network is shown
in Figure 2. Two observations can be made from the figure. First, convention propaga-
tion in SL is always faster than ML network. This is because of the delay in network
switches which are absent in SL network. Second, the convention propagation in type
2 is faster than type 1 setting. This is because of the duplicate links in type 2 which
increase the speed of convention propagation in type 2 multi-layer network. However,
the smaller proportion of these duplicate links in the multi-layer type 2 network isn’t
sufficient to match the speed of convergence to that of the SL network. These were also
noted in ER and BA networks. These fairly intuitive results confirm that multi-layer
networks indeed slow down convention spreading in realistic settings.

Fig. 2. Convention propagation in WS net-
works when node is selected at random

Fig. 3. Comparison of convention propaga-
tion using central node vs random node in
single-layer and multi-layer networks

4.2 Role of centrality-based influencer agents

To investigate the role of influencer agents, we conducted experiments that compare
the speed of convention propagation in both of these networks by starting convention
propagation by selecting a different agent to start convention propagation. In the first
approach, a norm entrepreneur agent was chosen randomly. In the other approach, based
on degree centrality, a hub node is chosen. This hub node has an account in both layers.
We conducted 100 experiments (each experiment with a different network of a certain
type such as ER network).



The result of this experiment is shown in Figure 3. It can be observed that starting
convention propagation using a node selected based on degree centrality is faster than
using a node selected at random. This is consistent with the definition of centrality that
the centrality of a node measures a node’s relative importance within a network. The
more central the node, the more influential it is, in the network.

4.3 Role of multiple influencer agents

As opposed to the use of single influencer agent as discussed above, we conducted
experiments using multiple influencer agents. The influencer agents in a network are
measured by ranking nodes in descending order of degree centrality. The impact of us-
ing multiple influencer agents in an ER single-layer network is shown in Figure 4. It can
be observed that, even though the hub node is the most connected in any given network,
using this node in isolation is slower than using multiple agents to start convention
propagation. It can also be observed that as the number of influencer agents increases,
the number of iterations taken to fully converge decreases. This is because propagation
is started from multiple sources that are located in different areas of the network. This
allows the information to be spread over a longer distance much faster than if only one
influencer agent is used. Figure 5 shows the impact of using multiple influencer agents
in an ER multi-layer network. It can be observed that as the number of influencer agents
increases, the speed of propagation also increases. This is consistent with the results for
the ER single-layer network. We note that the role of influencer agents in single-layer
networks have been studied by other researchers [3,11]. Our study shows that the results
hold for multi-layer networks also.

Fig. 4. Convention propagation using multi-
ple influencer agents in an ER single-layer
network

Fig. 5. Convention propagation using mul-
tiple influencer agents in an ER multi-layer
network



4.4 Discussion

Our work is different from other researchers in the area of NorMAS (e.g. [3, 11]) as
they are limited to single layer networks. The work of Li et al. [6] considers multi-
layer networks, but assumes that the same nodes are present in the all the layers of the
network. In our work, we relax this assumption and allow for nodes to be absent from
one of the layers of the multi-layer network.

This work in progress paper makes three contributions to the study of convention
propagation in multi-layer networks. First, we have shown that the spread of informa-
tion is faster in single-layer networks in most realistic situations than multi-layer net-
works. Second, we have shown through our experimental results how the spread of con-
vention propagation can be improved in single-layer and multi-layer networks through
the use of seeded influencer agents. We are currently extending our model by consid-
ering the weights of edges since some individuals are more influential over others. In
the future, we will investigate a threshold based model where an individual adopts a
convention if certain proportion of its neighbours adopt it. Also, the agent will have the
ability to decide whether to adopt a convention and whether to propagate a convention
to its neighbours.
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