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Abstract. This paper explores a hitherto largely ignored dimension to
norms in multi-agent systems: the normative role played by optimiza-
tion objectives. We introduce the notion of optimization norms which
constrain agent behaviour in a manner that is significantly distinct from
norms in the traditional sense. We argue that optimization norms un-
derpin most other norms, and offer a richer representation of these. We
outline a methodology for identifying the optimization norms that under-
pin other norms. We then define a notion of compliance for optimization
norms, as well as a notion of consistency and inconsistency resolution.
We offer an algebraic formalization of valued optimization norms which
allows us to explicitly reason about degrees of compliance and graded
sanctions. We then outline an approach to decomposing and distribut-
ing sanctions amongst multiple agents in settings where there is joint
responsibility.

1 Introduction

The connection between norms and preferences and between norms and opti-
mization objectives has received relatively little attention in the literature. Boer
et al [1] have argued that legal norms may be viewed as statements of ceteris
paribus preference. van der Torre and Tan [2] have defined a preference-based
semantics for norms which have been leveraged by Dignum et al [3] to develop
a semantic account of how goals and intentions are obtained from desires via a
process constrained by norms and obligations (utilities are also mentioned in [4]
but not related to norms).

The connections, however, are deeper and merit closer scrutiny. Let us consider
the connections with preferences and optimization objectives first. Optimization
problems are traditionally formulated via a set of decision variables (a complete
assignment of values to these constitutes a solution to the problem), a set of
constraints on these variables and an objective function formulated from these
variables whose value we seek to optimize (i.e., maximize or minimize). Solu-
tions which satisfy all of the applicable constraints are called feasible solutions,
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while those which optimize the value of the objective function are called opti-
mal solutions. An objective function may be viewed as generating a preference
relation on the set of feasible solutions, such that optimal solutions are the most
preferred of the feasible solutions under this relation. Given a set of alternatives
(in the this instance, the set of feasible solutions) an objective function may be
viewed as an intensional representation of the underlying preference relation.

Imagine a future where organizations may be referred to “carbon tribunals”
for non-compliance with the carbon-mitigation norm. We would argue that in
its purest sense, this norm must be represented as the optimization objective
minimize carbon-footprint. One might argue that in real-life, such norms are
manifested as simpler numeric carbon mitigation targets for organizations (e.g.
“reduce your cumulative emissions by n tons”). However, this representation
of the norm is a compromise, where some regulatory authority has sought to
present a simpler (to evaluate and understand) target for organizations to meet,
by trading off the need to impose a target that achieves real emissions reduction
against the need to not impose a norm that would be infeasible for organizations
to meet. We would argue that such norms (with numerically specified targets)
must be accorded a status befitting their true nature: as simplifications and
imperfect, incomplete compromises between the true intent of the norm and the
current business reality. The numeric target is a fragile construct, contingent
on the perceived business context at the time the norm was formulated. The
introduction of new technology may actually make a higher carbon-mitigation
target feasible, but such a change would be hard to reflect dynamically on the
norm (which would typically be reviewed and revised infrequently, together with
other norms, by a regulatory authority). Similarly, difficult market conditions
might oblige us to revise the carbon-mitigation targets downwards. Clearly, this
constant need for revising the norm could be avoided if the norm were represented
in its natural form (as the optimization objective minimize carbon-footprint).

It may appear at first blush that a notion of compliance with such norms
is difficult to define. We will present evidence to the contrary. Imagine the or-
ganization charged with non-compliance with the carbon-mitigation offering its
defence to the tribunal by presenting a log of all its key organizational decisions
over an audit period and establishing that each choice of the organization from
the available options was in fact the optimal one with respect to the minimize
carbon-footprint objective. Intuitively, this is a reasonable defence, underpinned
by the argument that the organization “did the best that it could” under the
circumstances. We shall formalize a notion of compliance with norms that are
optimization objectives along these lines.

Based on these considerations, we argue that there is a need to extend our
ontology of norms with a new class of optimization norms. These are norms
represented in the form of optimization objectives or, as we shall see later, as
the preference relations that underpin them. Optimization norms do not admit
boolean evaluation. We shall distinguish them from the more traditional concep-
tion of a norm (which does admit boolean evaluation) by referring to the latter
as boolean norms. Our approach bears some similarity in underlying intuitions to
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studies of supererogation in deontic logic (see for instance [5]) but uses entirely
different machinery.

Note that the use of optimization norms does not imply that there must exist a
unique optimal state (or set of states) in the absolute sense. As the motivating ex-
ample above illustrates, and as we shall discuss in greater detail later in this paper,
optimization norms merely inform choice amongst the available feasible alterna-
tives. That set of available feasible alternatives might change from context to con-
text. This approach thus does not preclude dynamic contexts or norm evolution.

Part of our premise here is that “teasing out” the objective underpinning
a norm and bringing it to bear on the reasoning process is important, for the
following reasons. First, encoding norms as objective functions offers a more
accurate and richer representation of norms. Second, it provides an opportunity
to explicitly bring a mature body of results from the field of optimization to bear
on norm-driven reasoning problems, opening up the possibility of significantly
faster reasoners. Third, it permits us to relate norm-compliance to the notion of
satisficing [6] of optimization objectives. Fourth, it enables us to define a notion
of degrees of norm compliance, and correspondingly, graded sanctions.

This latter point is of particular importance, and can be analyzed from two
perspectives. The first involves the notion of graded compliance. Many commonly
occurring compliance requirements are stated in an imprecise fashion. Consider,
for instance, the requirement quarterly activity statements must be filed within
a reasonable time frame [7]. It is difficult to determine in a categorical fash-
ion whether this requirement has been satisfied, given the ambiguity associated
with determining whether a certain time frame is ”‘reasonable”’. One way of
dealing with the problem is to ”‘contextualize”’ such requirements through a
(largely human-mediated) exercise of transforming these into crisp requirements
by adding elements to the specific context (such as a definition of ”‘reasonable”’
in a particular application context) [8]. Alternatively, one can make (potentially
subjective) assessments of degrees of compliance. In the spirit of satisficing op-
timization objectives, thresholds on these degrees of compliance can be used to
determine, for instance, whether the operations of an organization are sufficiently
compliant, even in the absence of boolean assessments of compliance.

The second involves the related notion of graded sanctions. The use of formal
reasoning tools to model, analyze and monitor contracts is becoming increasingly
important [9] [10]. A particularly hard problem in this space is the formalization
of sub-contracting and outsourcing (both increasingly common business prac-
tices). In particular, the decomposition of a set of penalties or sanctions amongst
a set of sub-contractors is difficult to formalize. Intuitively, when a norm or con-
tractual obligation is violated, we would expect the applicable penalties to be
distributed amongst the sub-contractors in direct proportion to the extent of
their contribution to (or responsibility for) the violation. While Villatoro et al
[11] and Boella et al [12] have considered the problem of sanctions in multi-agent
contexts, they have not described any machinery for decomposing a sanction to
obtain individual agent-specific graded sanctions in settings where agents have
joint responsibility (and hence graded levels of norm violation).
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The remainder of this paper is structured as follows. In Section 2, we discuss
how optimization norms underpin most traditional conceptions of norms (i.e.,
boolean norms), and provide methodological guidelines for how these might be
identified/extracted from boolean norms. In Section 3, we motivate and define
an algebraic formalization of optimization norms in the form of valued optimiza-
tion norms. In Section 4, we identify two alternative notions of compliance with
optimization norms, based on the extent of the horizon over which compliance
is assessed. In Section 5, we identify alternative notions of consistency (both
between optimization norms and between optimization and boolean norms). We
also identify alternative approaches to the resolution of these inconsistencies.
In Section 6, we address the problem of sanction management, and in particu-
lar, how sanctions might be decomposed, or distributed amongst a collection of
agents that had shared responsibility for a norm (the violation of which leads
to the sanctions in question). Section 7 involves a discussion of some related
implementations that offer pointers to how a machinery for optimization norm
enforcement might be implemented. We present concluding remarks in Section 8.

2 Identifying Optimization Norms

In a very intuitive manner, it is possible to articulate an objective function un-
derpinning every norm. Consider the social norm that one should not litter.
Given that there are many plausible extenuating circumstances where littering
may in fact be permissible (e.g., one drops one’s bag of sandwiches on the park
bench to go prevent a child from stepping into traffic), the underpinning opti-
mization objective is to minimize the extent of littering. In a social context, the
articulation of the prohibition of littering may be viewed as a necessary simpli-
fication of the more complex (and more nuanced) underpinning social objective.
In a similar vein, the social norm that prohibits delays in the payment of out-
standing invoices is underpinned by the optimization objective to minimize the
delay between the receipt of the invoice and payment. The social norm that
obliges us to consult widely prior to taking decisions in organizational settings
may be viewed as being underpinned by the optimization objective to maximize
the extent of consultation prior to taking decisions. More generally, we could
posit that:

– Prohibitions are underpinned by minimization objectives.

– Obligations are underpinned by maximization objectives.

The duality of maximization and minimization objectives (every maximization
objective can be represented by a corresponding minimization objective and vice
versa) is reflected by the duality of prohibitions and obligations [13]. In addition,
fairness norms [14] can be encoded as load-balancing objectives.

In many cases, the boolean proposition associated with the norm can be trans-
formed into a continuous valued variable. Thus, the boolean proposition littering
is transformed into the variable extent-of-littering, the proposition consultation
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to the variable extent-of-consultation and so on in the examples above. In gen-
eral, the following simple procedure might be used to identify the optimization
objective underpinning a norm:

– Identify the action that the norm seeks to constrain. In our examples above,
these would be “littering”, “consultation” and “carbon emission”.

– Identify a measure that is applicable on the task that norm makes refer-
ence to. In our examples above, these would be extent-of-littering, extent-of-
consultation or extent-of-carbon-emission. These become the variables that
the eventual objective function would refer to. In the following, we shall refer
to this as the task measure.

– Identify whether the norm seeks to maximize or minimize the measure de-
fined in the previous step (load balancing objectives can also be represented
as maximization or minimization objectives). This gives us the final objective
function.

Note that articulating an objective function does not automatically give us a
fully formulated optimization problem (that would require the typically hard
task of modeling constraints). However, as we shall see below, the optimality
of choices with respect to an optimization objective can be evaluated using a
variety of means even if the problem has not been formulated as an optimization
problem.

It is important to note that our conception of optimization norms is not
specifically intended for modeling social norms. The machinery we develop is
applicable to both individual objectives (and preferences) as well as social norms
and the preferences that underpin them.

It is also important to note that, our observations in this section notwith-
standing, practical applications will likely involve both boolean and optimiza-
tion norms. It is therefore important to develop machinery that can handle both
(our discussion of norm consistency later in the paper will address the question
of consistency between boolean and optimization norms).

3 An Alternative Formalization

In this section, we provide an alternative formalization of optimization norms in
terms of an algebraic framework for preference handling and show how it offers a
sophisticated machinery for dealing with graded compliance and correspondingly
graded sanctions.

It is useful to examine first the space of alternative means for formalizing
optimization norms. The most obvious is to represent optimization norms in the
form of objective functions in the sense understood in the literature on operations
research, or as utility functions in the sense of the literature on decision theory.
One might also formalize these using preference relations of various kinds as
formalized in the literature on preference handling. To the extent that an opti-
mization norm needs to encode preference over states of affairs (or solutions) each
of these approaches turn out to be equally viable (recall the discussion on the
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interplay between objective functions and preference in Section 1). Ultimately,
our choice was guided by two additional requirements. First, the representation
scheme needed to support an explicit notion of degree of compliance. Objective
functions (or utility functions) arguably meet this requirement - the value of a
(maximization) objective function for a given solution can be viewed as an indi-
cator of how good that solution might be. Representations based on preference
relations do not naturally lend themselves to analysis of degree of compliance.
Second, the representation scheme had to be general enought to admit assess-
ments of preference on multiple heterogeneous scales (as is likely to be the case
in real-life applications) including both quantitative and qualitative scales. Both
objective/utility functions and preference relation based approaches fall short
relative to this requirement.

The c-semiring framework [15] was chosen for our formalization of optimiza-
tion norms primarily because it satisfies all of the requirements discussed above.
The framework was originally developed for defining soft constraints as pref-
erences over assignments of values to decision variables in (potentially over-
constrained) constraint satisfaction problems. For our purposes, the c-semiring
framework enables abstract encodings of preference over multiple heterogeneous
scales (which could be both qualitative and quantitative). Multiple distinct c-
semirings, each encoding a distinct dimension over which preference is specified
(including mixes of qualitative and quantitative dimensions) can be combined
in a simple fashion to obtain a single c-semiring [15] - thus providing a modu-
lar framework in which preference dimensions could be added or removed while
leaving much of the reasoning machinery intact.

We start with the definition of a c-semiring [15].

Definition 1. [15]: A c-semiring is a 5-tuple 〈A,⊕,⊗,0,1〉 such that:

– A is a set of abstract preference values with 0,1 ∈ A (0 represents the
”‘worst”’ preference value while 1 represents the ”‘best”’ preference value);

– ⊕ is a binary operator which is closed (i.e. if a, b ∈ A, then a ⊕ b ∈ A),
commutative (i.e. a⊕ b = b ⊕ a), associative (i.e. a⊕ (b ⊕ c) = (a⊕ b)⊕ c),
idempotent (i.e. if a ∈ A, then a ⊕ a = a), has 0 as a unit element (i.e.
a⊕0 = a = 0⊕a), and with 1 as an absorbing element (i.e. a⊕1 = 1 = 1⊕a);

– ⊗ is a binary operator which is closed (i.e. if a, b ∈ A, then a ⊗ b ∈ A),
commutative (i.e. a⊗b = b⊗a), associative (i.e. a⊗(b⊗c) = (a⊗b)⊗c), has
1 as a unit element (i.e. a⊗ 1 = a = 1⊗ a), and 0 as an absorbing element
(i.e. a⊗ 0 = 0 = 0⊗ a);

– ⊗ distributes over ⊕ (i.e. a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)).

Intuitively, ⊕ is used to compare preference values, while ⊗ is used to combine
preference values. The ⊕ operator generates a partial order � on A as follows: for
any v1, v2 ∈ A, v1 � v2 (read this as v1 is “at least as good as” v2) if v1⊕v2 = v1.

In the constraint satisfaction literature, several useful instantiations of c-
semirings have been discussed: boolean (where A = {T, F}), fuzzy (where A =
[0, 1]), weighted (where A = R+) etc. Qualitative c-semirings can be of interest,
where the ⊗ and ⊕ operators are defined extensionally. Consider the following
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c-semiring, where l represent low, m represents medium and h represents high:
Q = 〈{l,m, h},⊕,⊗, l, h〉 where l ⊕m = m, m ⊕ h = h, l ⊕ h = h, l ⊗ m = l,
m ⊗ h = m, and l ⊗ h = l. To rephrase this, this c-semiring allows us to use 3
preference values - low, medium and high - with low as the designated “worst”
value (the element denoted by 0 in the c-semiring) and high as the designated
“best” value (the element denoted by 1 in the c-semiring). If we were to com-
pare these values using the ⊕ operator, the comparison of low and medium would
yield medium, the comparison of medium and high would yield high and so on.
Similarly, if we were to combine these values using the ⊗ operator, then the
combination of low and medium would generate low, the combination of medium
and high would generate medium and so on.

Notice that the set of preference values in each of the c-semiring instances dis-
cussed above offers a scale on which degree of compliance might be assessed. This
is also true for c-semirings consisting only of abstract preference values, and for
composite c-semirings obtained by combining several component c-semirings us-
ing the technique described in [15] (ommitted here for brevity). Thus, if we were
using the qualitative c-semiring discussed above with preference values {l,m, h},
we obtain a vocabulary for describing degree of compliance that permits us to
assert that a given state of affairs has a low (l) degree of compliance, or a medium
(m) degree of compliance and so on. Similarly, one might conceive of a compos-
ite c-semiring consisting of this qualitative c-semiring combined with the fuzzy
c-semiring discussed above which would allow us to assess preference on two
separate dimensions using these two distinct scales, where degrees of compliance
would be represented using pairs where the first element is a preference value
from the qualitative c-semiring and the second element a value from the fuzzy
c-semiring (e.g. 〈l, 0.7〉 or 〈m, 0.55〉).

In the following, we will take a state to be a complete assignment of values
to a set of variables V (these do not necessarily have to be propositional, thus
permitting us to also view solutions to constraint satisfaction or optimization
problems as states). We define a valued optimization norm (so called because
these norms associate states with specific preference and sanction values) as a
mapping from a state to a semiring valuation of that state. In addition, we define
a real-valued penalty associated with each state. We also constrain the penalties
so that any penalty associated with a more preferred state has to be lower than a
penalty associated with a less preferred state. If two states are equally preferred,
then their penalties must be equal. Also, the penalty associated with the most
preferred state must be 0.

Definition 2. Given a c-semiring P = 〈A,⊕,⊗,0,1〉 and a set of states S (with
penalties represented as elements of the set of reals R), a valued optimization
norm nP is defined as nP : S → A × R, such that: (1) For any s such that
nP (s) = 〈1, r〉, r = 0 and (2) For any s1 and s2, if nP (s1) = 〈v1, r1〉 and
nP (s2) = 〈v2, r2〉 where s1, s2 ∈ S, v1, v2 ∈ A and r1, r2 ∈ R and v1 ⊕ v2 = v1,
then r1 ≤ r2 (if v1 = v2, then r1 = r2).

Example 1. Consider a simple example where our propositional vocabulary
consists of 2 letters, p and q and we prefer the state p∧ q the most and the state
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¬p ∧ ¬q the least. The states ¬p ∧ q and p ∧ ¬q are in-between most and least
preferred and are equally preferred. A valued optimization norm nQ conforming
to the definition above could be defined as follows, using the c-semiring Q =
〈{l,m, h},⊕,⊗, l, h〉 (together with its associated extensional definitions of ⊕
and ⊗) as in the discussion above: nQ(p ∧ q) = 〈h, 0〉, nQ(¬p ∧ q) = 〈m, 5〉,
nQ(p ∧ ¬q) = 〈m, 5〉, nQ(¬p ∧ ¬q) = 〈l, 10〉.

Note that the definition above provides the basis for two important dimensions
to practical compliance management. The first is graded compliance. Valued op-
timization norms permit us to associate an explicit degree of compliance value
(effectively the corresponding c-semiring value) with each state of affairs. They
also permit us to associate finer-grained sanctions (as opposed to a single sanc-
tion for the violation of a boolean norm) with different degrees of compliance.

It is easy to see how contrary-to-duty obligations can be represented in this
formalization. Consider a reparation sequence (one way to represent a contrary-
to-duty obligation) in FCL [16] (× is used in the following to mean ”‘else”’) : O1×
O2× . . .×Om. The reparation sequence above is to be read as follows: obligation
O1 holds, failing which obligationO2 holds and so on. LetM(φ) represent the set
of states that satisfy φ (i.e., the models of φ). This reparation sequence can be
represented by any norm nP satisfying the following property: For any s ∈ M(Oi)
and any s′ ∈ M(Oj) where i < j and nP (s) = 〈v, r〉 and n(s′) = 〈v′, r′〉, v⊕v′ = v
and r < r′. Consider an FCL[16] reparation sequence: (Op ∧ q) × (O¬p ∧ q) ×
(O¬p∧¬q), where Oφ represents the obligation to make φ true. nQ defined in the
example above is one instance of a valued optimization norm that encodes this
reparation sequence. In general, a given reparation sequence could be encoded
by a number of distinct valued optimization norms.

In the discussion in the subsequent sections, some of the development will be
presented in terms of the abstract notion of optimization norms, without specif-
ically referring to valued optimization norms. Some concepts will, however, be
illustrated using valued optimization norms. The discussion on sanction manage-
ment later in the paper relies entirely on our formalization of valued optimization
norms.

4 Complying with Optimization Objectives

We first consider in abstract terms the machinery that we might use to select
amongst alternative options. These options could be plans in BDI agents (often
called option selection [17]) or intentions (the intention selection problem [17])
or, more generally, states that an agent might seek to realize. In general terms,
the machinery we require must be able to make ordinal comparisons between
states resulting from the optional courses of action that an agent might have to
select from. For instance, given two states s1 and s2 and an optimization norm
maximize x articulated in terms of a task measure x, the machinery must be
able to make a determination on which of s1 and s2 lead to a higher value of
x (without necessarily computing that value), or whether they lead to identical
values of x.
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As discussed in the introduction, one intuitive approach to establishing that
an agent has complied with a optimization norm is to establish that its decisions
sought to optimize the norm. This can be formalized in two ways:

– Global compliance: This requires that the final state achieved by an agent be
the optimal (relative to the optimization norm) of all the states that were
feasible for the agent to achieve. Note that this approach is only applicable
when the agent performs bounded computation and a clear notion of final
state exists. It also requires the ability to compute the set of all possible final
states that would be feasible for the agent to achieve. It might also mean
that agents would make local choices that not optimal with respect to the
objective (in the interests of arriving at the globally optimal final state).

– Local compliance: This requires that every (local) choice made by the agent
be optimal with respect to the objective. Note that this might mean that
the final state arrived at by an agent (performing bounded computation)
is sub-optimal. However, this notion of compliance can be used in agents
performing unbounded computation.

5 Managing Norm Conflict

We address the question of norm conflict detection and resolution in this section.
We begin by considering a well-known example of the interplay between norms
and preferences.

Sen’s Example. Sen [18] offers an example where the interplay between norms
and objectives generates results that are contrary to what preference maximiza-
tion would generate. Consider a situation where an agent prefers option x to y
and y to z. Assume that the agent selects y from {x, y, z} and selects z from
{y, z} (both choices run counter to the preference maximization principle). Sen
offers an account involving norms that explains such behaviour. Assume that
the options are differently-sized slices of a cake, and that x is the biggest slice, y
the next in size and z the smallest. The agent has a preference for larger slices
of the cake. To explain the behaviour of the agent, Sen brings to bear a “polite-
ness” norm, which requires the agent to not select the largest slice when asked
to choose from a set of cake slices. In selecting amongst {x, y, z}, the agent uses
this norm to rule out option x and then selects the preferred option from the
remainder (i.e., option y). Similarly, in selecting amongst {y, z}, the agent rules
out y as an “impolite” choice (it is the largest of the 2 choices) and selects the
remaining option (z).

We argue that viewing the politeness norm as a preference ordering (which
prefers any state where a non-largest slice of cake is selected over a state where
the largest slice is selected), together with a prioritization on objectives (where
the optimization norm derived from the politeness norm has priority over the
optimization norm to maximize the size of the cake slice selected), offers an
equally valid explanation of the agent’s behaviour. Indeed, our approach supports
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finer grained reasoning, for instance, by permitting us to explore the pareto-
frontier with respect to these two objectives (if they were treated as having
equal priority).

We need, in the first place, a formal definition of conflict for optimization
norms (with other optimization norms as well as with boolean norms). We will
define consistency for optimization norms by viewing them as preference re-
lations on the set of feasible solutions (recall the discussion of these issues in
the introduction). We can then define three distinct notions of consistency for
optimization norms.

– Absolute consistency: Under this notion, a pair of optimization norms o1 and
o2 are deemed to be inconsistent if and only if there exists a pair of solutions
(or options) s and s′ such that s is preferred over s′ under o1 and s′ is pre-
ferred over s under o2. Absolute consistency is arguably an overly stringent
notion. Our intent here is to identify situations where objectives might “pull
in different directions”’. Under this notion of consistency, we would deem a
pair of optimization norms to be inconsistent even if the pair s and s′ whose
relative ordering they disagreed on were actually not in the set of options
currently being deliberated on. In other words, we would deem the objectives
to be inconsistent even if they were not “pulling in different directions” in
the current instance. Note also that checking consistency in this mode re-
quires that we extensionally elaborate the preference relation corresponding
to the optimization norm with reference to the set of all possible options over
which preferences might be specified - but that set is potentially unbounded
and cannot in general be predicted. Checking for absolute inconsistency is
therefore impractical.

– Contextual consistency: Under this notion, a pair of optimization norms o1
and o2 are deemed to be inconsistent in a given context C (defined as a set
of options/solutions from which a choice has to be made) if and only if there
exists a pair of solutions (or options) s, s′ ∈ C such that s is preferred over
s′ under o1 and s′ is preferred over s under o2. The notion of contextual
consistency helps us determine whether a pair of objectives would lead to
conflicting preferences in a particular context, given a particular set of al-
ternatives. It could be argued that this too is a somewhat stringent notion,
since conflicting preferences might not manifest themselves in actual con-
flicting choices if the conflicting preferences involve options that are not the
top choices (i.e., the most preferred options) under the two preference or-
derings. In other words, an agent could “tolerate” optimization norms which
are deemed to be both absolutely inconsistent and contextually inconsis-
tent, as long as this does not lead to conflicting choices. On the other hand,
if the context changes infrequently, this notion of consistency can be useful
(if the relevant optimization norms are - or can be made - consistent for
that context, no further inconsistency handling will be required while that
context remains unchanged). Checking for consistency over a set of optimiza-
tion norms involves a straightforward generalization of the pair-wise check
mentioned above.



Norms as Objectives: Revisiting Compliance Management 115

– Choice consistency: Under this notion, a pair of optimization norms o1 and
o2 are deemed to be inconsistent in a given context C (defined as a set of
options/solutions from which a choice has to be made) if and only if S is the
set of strictly non-dominated solutions (or options) under o1, S

′ is the set
of strictly non-dominated solutions (or options) under o2, S ⊆ C, S′ ⊆ C
and S ∩ S′ = ∅. Here, the set of strictly non-dominated solutions consists of
those solutions for which there exists no other that is strictly more preferred
under the given ordering.

We now consider the question of conflict between optimization norms and boolean
norms. Optimization norms and boolean norms do not conflict in an absolute
sense, i.e., independent of a given context (given by set of available alternatives).
To understand why, we need to recall a commonly used definition of inconsis-
tency: two assertions are inconsistent if there does not exist a model which satis-
fies both. Note that the notion of a model “satisfying”’ an optimization objective
is undefined. Viewed in terms of preferences over models or states, the notion of
compliance with an optimization norm that we have defined above requires not
just the preferred state/model but all of the other states/models that were avail-
able as options before we can determine compliance with an optimization norm.
We cannot therefore speak of the inconsistency of an optimization norm with a
boolean norm, independent of richer contextual information, in any meaningful
sense.

However, an optimization norm o will be deemed to be inconsistent with a
boolean norm n in a given context C if and only if every element of the set S
(where S ⊆ C) of strictly non-dominated (most preferred) options according to o
violates n. We assume, as before, that the options in question are actions/tasks,
or plans or states of affairs, so that in each case we are able to check for the
violation of boolean norms. Note that we can only define inconsistency using
intuitions similar to those for choice consistency for optimization norms.

We will now consider an example that illustrates these notions of inconsis-
tency, using valued optimization norms. Note that the focus in the example
is on the c-semiring valuations associated with states of affair - the associated
penalties/sanctions do not play a role in the example (but become critical in the
later discussion on sanction management).

Example 2. Recall, from Example 1, the valued optimization norm nQ using
the c-semiring Q = 〈{l,m, h},⊕,⊗, l, h〉 (together with its associated extensional
definitions of ⊕ and ⊗): nQ(p ∧ q) = 〈h, 0〉, nQ(¬p ∧ q) = 〈m, 5〉, nQ(p ∧ ¬q) =
〈m, 5〉, nQ(¬p ∧ ¬q) = 〈l, 10〉. Consider another valued optimization norm n2Q
defined (using the same c-semiring Q) as: n2Q(p ∧ q) = 〈h, 0〉, n2Q(¬p ∧ q) =
〈m, 5〉, n2Q(¬p∧¬q) = 〈m, 5〉, n2Q(p∧¬q) = 〈l, 10〉. Under the notion of absolute
inconsistency, nQ and n2Q are inconsistent, since the state p ∧ ¬q is preferred
over ¬p ∧ ¬q under nQ while the opposite preference holds under n2Q. If the
current context is defined by these two states, then this also illustrates contextual
inconsistency. Consider a third valued optimization norm n3Q defined on the
same c-semiring Q: nQ(p ∧ ¬q) = 〈h, 0〉, nQ(p ∧ q) = 〈m, 5〉, nQ(¬p ∧ ¬q) =
〈m, 5〉, nQ(p ∧ q) = 〈l, 10〉. If the context is defined by states satisfying p ∧ q
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and p ∧ ¬q, then the norms nQ and n3Q are inconsistent under the notion of
choice consistency (the strictly non-dominated states under the two norms lead
to incosistent states). In the same context, the boolean norm p∧¬q contradicts
the valued optimization norm nQ (note that the set of strictly non-dominated
states under nQ consists of a single state: p ∧ q).

The resolution of inconsistency in any theory leads to changing the theory in
some way. The logic of the theory change [19] argues that when we are obliged
to make changes to a theory, we should try to minimize the extent of change,
given that theories encode knowledge or intent or deontic constraints which
we should alter as little as possible while still accommodating the change that
needs to be implemented. Arguably, the same intuitions apply when we resolve
inconsistencies amongst norms.

The three notions of consistency discussed above lead to three corresponding
notions of resolution:

Resolving absolute inconsistency: Resolving this type of inconsistency requires
that an assertion of the form s′ ≺ s (s is preferred to s′) be removed from one of
the pair of optimization norms that are found to be inconsistent. As discussed
before, this notion of consistency is in general of little practical value, except in
settings where the set of all alternatives that an agent might ever have to select
amongst is known a priori (in which case it effectively reduces to contextual
consistency).

Resolving contextual inconsistency: This involves the same machinery as in the
case of absolute inconsistency. Observe that inconsistency resolution means that
one or more of the currently applicable set of optimization norms is relaxed. In
the event that inconsistency is detected over a set of optimization norms O =
{o1, o2, . . . , om} where Os ⊆ O consists of optimization norms which prefer s over
s′ and Os′ ⊆ O is the set of optimization norms which prefer s′ over s, then we
might use majority as the basis for deciding which of the preferences get relaxed.
Thus, if |Os′ | < |Os|, we might choose to remove s ≺ s′ from each element of
Os′ . In other settings, the criteria to determine which optimization norm to relax
would be domain-dependent (in mixed-initiative reasoning settings, one might
even ask the user for guidance on this). Observe that once inconsistency has been
resolved, we could take the union of the resulting set of preference relations to
guide choice. A range of other intuitions are explored in computational social
choice theory (see [20] for a survey).

Resolving choice inconsistency: In the case of a set of optimization norms gener-
ating sets of strictly non-dominated (most preferred) options that do not inter-
sect, we would have to pick the “winning” set of norms (whose top choices would
determine an agent’s selections). As with contextual inconsistency, we could use
majority as the basis for deciding the winners - alternatively, the criteria would
be domain-dependent.

In the account of inconsistency resolution above, we had to rely on a representa-
tion of an optimization norm in the form of a preference relation. We can explore
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the resolution of inconsistency between optimization norms using two additional
intuitions, which do not require this reduction to a preference relation:

Pareto-optimal solutions: The notion of pareto-optimality, frequently used in
decision theory, provides an alternative basis for resolving inconsistency amongst
optimization norms. In the following, we will use o(s) to denote the value of the
objective o for option s. Given a set of optimization norms O = {o1, o2, . . . , on},
which are viewed uniformly, and without loss of generality, as maximization
objectives and a set of options S = {s1, s2, . . . , sm}, a pareto-optimal solution
is typically defined as some si ∈ S such that there exists no sj ∈ S for which
ok(sj) > ok(si), for at least one ok ∈ O, and for all other oi ∈ O where i �= k,
oi(sj) ≥ oi(si). In other words, a pareto-optimal option is one for which there
exists no other feasible option which performs strictly better on one objective
and at least as well on all of the others. The term pareto-frontier is often used
to describe the set of all pareto-optimal solutions. In our setting, the pareto-
frontier can be viewed as consisting of alternative resolutions of optimization
norm inconsistency. These can be presented as choices to users in a mixed-
initiative reasoning setting (the system only filters, but does not make the final
choice in such settings).

Prioritization of objectives: A well-known approach to dealing with multiple ob-
jectives in operations research is to create a weighted sum of these objectives,
with the weights reflecting the relative priorities of the corresponding objectives.
There is a critical assumption here that the objective functions map options to
commensurate scales (what would happen if one objective measured cost in dol-
lars and another measured time in seconds?). If all of the objectives are equally
weighted, then each solution to the resulting optimization problem represents
an element of the pareto-frontier. In our alternative account of Sen’s cake-choice
example, let oNL represent the optimization norm that makes us prefer states
where we haven’t eaten the largest slice of cake to states where we have. Let
oL represent our preference for eating larger slices of a cake. We simplify our
discussion by avoiding the formalization of the commensurate scales on which
the two objectives would evaluate options. The weighted combination of the
two objectives would be of the form wNL.oNL + wL.oL where wNL > wL (for
the purposes of our example, the actual weights are immaterial as long as this
inequality holds).

We now need to address the question of resolving inconsistencies between
optimization norms and boolean norms. The solution here is fairly simple: op-
timization norms can be relaxed while boolean norms cannot. Recall that an
optimization norm o will be deemed to be inconsistent with a boolean norm n
in a given context C if and only if every element of the set S (where S ⊆ C) of
strictly non-dominated (most preferred) options violates n. This inconsistency
can be resolved if we are able to promote at least one n-satisfying state (say s)
to become a member of S. Given our earlier discussion on the need to minimize
change to the original specification of a norm, we could explore several intu-
itions on the specific changes required in the underlying preference relation (as
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before, viewed as a set of preference assertions). The general approach would be
to identify an o′ which satisfies the following conditions: (1) There exists at least
one n-satisfying element of the set of strictly non-dominated options under o′,
(2) There exists no o′′ where (oΔo′′) ⊆ (oΔo′) which also satisfies condition (1)
(here Δ refers to the symmetric set difference operator).

An important question to address is the distinction between the violation
and relaxation of optimization norms. We relax an optimization norm to ensure
consistency with other norms. The notion of norm compliance discussed earlier
continues to provide a clear yardstick for deciding whether an optimization norm
(or a set of such norms) has been violated.

6 Sanction Management

We now consider the problem of norm compliance in multi-agent systems, and
in particular the problem of how graded sanctions (corresponding to graded de-
grees of non-compliance) might be decomposed and assigned to the (possibly
many) agents responsible for a (graded) violation. Social norms may need to be
decomposed to obtain agent-specific obligations in a multi-agent context. As dis-
cussed earlier, this is a problem of practical importance whenever agents delegate
responsibility to other agents. In a more general business setting, a formal under-
standing of the decomposition of sanctions is critical in managing outsourcing
and in formalizing the relationship between a contract and sub-contracts when-
ever sub-contracting is involved. A formalization is complicated by the fact that
the sanctions associated with different levels of compliance/violation are contex-
tually determined, specifically by the number of agents involved in satisfying the
norm in question, and the level to which each of these comply with or violate
the norm.

In the following, given a set of agents Ag and a set of variables V ar, we will
use the function θ : Ag → 2V ar to map an agent to a set of variables that the
agent is responsible for. Also in the following, given a norm nP which specifies
preferences using an underlying semiring P , we will use bestvalnP (ag), to denote
the set of preference values assigned to the set of value assignments (states) that
include the current assignments of values to variables in θ(ag) by nP such that
there exists no state s that also includes the current assignment of values to
θ(ag) where nP (s) = 〈v′, r′〉 and v′ ≺ v for some v ∈ bestvalnP (ag) (here ≺ is
the strict version of the partial order � associated with the c-semiring P ).

Definition 3. Given a multi-agent norm context 〈nP , V ar, Ag, θ〉 where nP is
the norm in question, V ar is the set of variables over which the states that the
norm refers to are defined, Ag is the set of agents jointly responsible for satisfying
nP and the ⊗ operator associated with the c-semiring P is idempotent, and given
a complete assignment s of values to variables in V where nP (s) = 〈v, r〉, the
(real-valued) sanction applied on an agent agi is defined as:

– If bestvalnP (agi) = v then the sanction incurred by agi is r/m where AgX =
{ag | bestvalnP (ag) = v} and |AgX | = m.

– If bestvalnP (agi) �= v then sanction incurred by agi is 0.
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The idempotence property of the ⊗ operator, which states that a ⊗ a = a for
any preference value a is key to understanding the definition above. Operators
such as min and max are idempotent, while the arithmetic addition operator +
is not. With an idempotent combination operator such as min, the contribution
of an agent to the final preference value is only of interest if that final preference
value equals the best value assigned by the valued optimization norm to the
portion of the state determined by that agent. If the best value happens to be
higher, then the agent in question was not in fact responsible for the final value
of that state (some other agent or agents whose component of the final state was
evaluated to the eventual valuation of the state would have been responsible
instead). Similarly, if the contribution of the agent had a lower valuation, then
the whole state would have had that lower valuation, hence that case is not of
interest either.

As an example, consider a compliance requirement that both p and q have to
be completely satisfied. Assume that the c-semiring being used is Q as defined
above and that both p and q can be satisfied at one of the following 3 levels:
COMPLETELY (represented by the c-semiring value h), PARTIALLY (repre-
sented by m), NOT-AT-ALL (represented by l). Consider 2 agents: A1 and A2.
A1 is responsible for satisfying p. A2is responsible for satisfying q. The compli-
ance requirement is formalized by the valued optimization norm n1Q as follows:
n1Q(〈p = h, q = h〉) = (h, 0), n1Q(〈p = h, q = m〉) = (m, 50), n1Q(〈p = m, q =
h〉) = (m, 50), n1Q(〈p = m, q = m〉) = (m, 50), n1Q(〈p = l, q = l〉) = (l, 100),
n1Q(〈p = h, q = l〉) = (l, 100) (note that we need a total of 9 such assertions -
we do not list them all for brevity). Notice that the preference value assigned
to each state is obtained by applying the ⊗ operator on the preference values
associated with p and q.

– Scenario 1: The requirement is violated completely (incurring a penalty of
100) because A2 fails to satisfy q completely, i.e. as a NOT-AT-ALL (even
though A1 satisfies p completely). Here A2 pays a penalty of 100.

– Scenario 2: The requirement is violated partially (incurring a penalty of 50)
because A2 fails to satisfy q partially (even though A1 satisfies p completely).
Here A1 pays a penalty of 50.

– Scenario 3: The requirement is violated partially (incurring a penalty of 50)
because both A1 and A2 satisfy q and p (respectively) partially. Here A1

and A2 pay a penalty of 25 each

We do not list all of the scenarios here for brevity. The formalization above does
not cover the complete sanction decomposition problem, but offers pointers on
how the full problem might be solved using an approach like this. In the non-
idempotent case, if the ⊗ operator performs arithmetic addition of cost, it is
easy to decompose penalties to agents in direct proportion to their contribu-
tion to costs. In other cases, the complexity might arise due to evaluating the
contribution of each agent to an eventual outcome.
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7 Related Implementions of Optimization in Agent
Deliberation

It is useful, at this point, to consider the implementation of optimization norms
in agent systems. The theory of compliance for optimization norms discussed
in this paper has been implemented in the CASO BDI agent programming lan-
guage [21], which provides pointers on how optimization objectives might be
integrated into agent deliberation (but it does not support the framework for
inconsistency detection and resolution developed in this paper). The key idea
is that CASO agents accept optimization objectives as events in their event
queues. A CASO agent uses these objectives in option selection (choosing be-
tween competing plans)and intention selection. In the absence of a clear notion
of termination (common to most BDI agent implementations), a CASO agent
cannot look ahead to a final state (as required by the notion of global compliance
defined in this paper). Instead, a CASO agent achieves local compliance by prun-
ing the goal-plan tree obtained from its current options at a parametric depth,
and then exploring all paths to the pseudo-leaf nodes obtained. In deciding which
option to commit to, a CASO agent solves an optimization problem, using the
currently applicable optimization objectives, once for each option (CASO plan
contexts contain both constrain and non-constraint predicates, leading to a rep-
resentation akin to constraint logic programming). A CASO agent then selects
the option that offers the optimal value with respect to the currently applicable
optimization norms. Intention selection in CASO uses similar machinery.

In the BAOP agent programming language [22], both objective functions and
(c-semiring) valued preferences are brought to bear on agent deliberation. The
c-semiring preferences and specified with respect to domain states. The tradi-
tional AgentSpeak-style plans of CASO are therefore annotated with effects,
and machinery defined to propagate effects over plans and sub-plans. As with
CASO, BAOP provides pointers to how optimization norms might be integrated
into agent deliberation, but does not make provision for inconsistency detection
and resolution.

The rest of the machinery described in this paper has not been implemented.
However, as the discussion above suggests, much of the conceptual framework
presented should be possible to implement in a straightforward manner. On the
one hand, the need to solve optimization problems during agent deliberation adds
to its complexity. On the other hand, this framework provides tantalizing hints
on how agent programming environments could be based entirely on (efficient)
optimization technology.

8 Conclusions and Future Work

We have argued in this paper that optimization norms represent an important
dimension to normative reasoning in multi-agent systems. We have provided a
conceptual framework to support reasoning with optimization norms, and ex-
tended it to provide support for graded compliance, graded sanctions and sanc-
tion decomposition. The observations provided in this paper provide a starting
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point for an interesting strand of research. Ultimately, this raises the question:
are the problems of compliance checking and non-compliance resolution instances
of the more general optimization problem?
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