
A data mining approach to identify obligation norms in
agent societies

Bastin Tony Roy Savarimuthu, Stephen Cranefield, Maryam Purvis and Martin Purvis

University of Otago, Dunedin, P O Box 56, Dunedin, New Zealand
(tonyr,scranefield,tehrany,mpurvis)@infoscience.otago.ac.nz

Abstract. Most works on norms have investigated how norms are regulated us-
ing institutional mechanisms. Very few works have focused on how an agent may
infer the norms of a society without the norm being explicitly given to the agent.
This paper describes how an agent can make use of the proposed norm identi-
fication architecture to identify norms. This paper explains how an agent using
this architecture identifies one type of norm, an obligation norm. To this end, the
paper proposes an Obligation Norm Inference (ONI) algorithm which makes use
of association rule mining approach to identify obligation norms.

1 Introduction

Most works on norms in normative multi-agent systems have concentrated on how
norms regulate behaviour (e.g. [10]). These works assume that the agent somehow
knows (a priori) what the norms of a society are. For example, an agent may have
obtained the norm from a leader [7] or through an institution that prescribes what the
norms of the society should be [19].

Only a few researchers have dealt with how an agent may infer what the norms
of a newly joined society are [2]. Recognizing the norms of a society is beneficial to
an agent. This process enables the agent to know what thenormative expectationof
a society is. As the agent joins and leaves different agent societies, this capability is
essential for the agent to modify its expectations of behaviour, depending upon the
society of which it is a part. As the environment changes, the capability of recognizing
a new norm helps an agent to derive new ways of achieving its intended goals. Such a
norm identification mechanism can be useful for software agents that need to adapt to
a changing environment. In open agent systems, instead of possessing predetermined
notions of what the norms are, agents can infer and identify norms through observing
patterns of interactions and their consequences. For example, a new agent joining a
virtual environment such as Second Life [14] may have to infer norms when joining a
society as each society may have different norms. It has been noted that having social
norms centrally imposed by the land owners in Second Life is ineffective and there is
a need for the establishment of community driven norms [18]. When a community of
agents determines what the norm should be, the norm can evolve over time. So, a new
agent joining the society should have the ability to recognize the changes to the norms.

This work aims to answer the question of how agents infer norms in a multi-agent
society. To that end, we propose an internal agent architecture for norm identification.



The architecture is based on observation of interactions between agents. It enables an
autonomous agent to identify the obligation norms in a society using the Obligation
Norm Inference (ONI) algorithm presented here. Using an auction example, we demon-
strate how an agent makes use of the norm identification framework.

The paper is organized as follows. Section 2 provides a background on normative
multi-agent systems (NorMAS). Section 3 provides an overview of the norm identifi-
cation framework. Section 4 describes the components of the framework in the context
of an e-market scenario (buying and selling goods). Section 5 provides a discussion on
the work that has been achieved and the issues that need to be addressed in the future.
Concluding remarks are presented in section 6.

2 Background

Due to multi-disciplinary interest in norms, several definitions for norms exist [2]. The
definition of normative multi-agent systems as described by the researchers involved
in the NorMAS 2007 workshop is as follows [6].A normative multi-agent system is a
multi-agent system organized by means of mechanisms to represent, communicate, dis-
tribute, detect, create, modify and enforce norms, and mechanisms to deliberate about
norms and detect norm violation and fulfillment. Researchers in multi-agent systems
have studied how the concept of norms can be applied to artificial agents. Norms are of
interest to multi-agent system (MAS) researchers as they help in sustaining social order
and increase the predictability of behaviour in the society. Researchers have shown that
norms improve cooperation and collaboration [17,20].

Research in normative multi-agent systems can be categorized into two branches.
The first branch focuses on normative system architectures, norm representations, norm
adherence and the associated punitive or incentive measures. Several architectures have
been proposed for normative agents (refer to [12] for an overview). The second branch
of research is related to emergence of norms. Several researchers have worked on both
prescriptive (top-down) and emergent (bottom-up) approaches to norms (refer to [15].

The work reported in this paper falls under the bottom-up approach to the study
of norms. Many researchers in this approach have experimented with game-theoretical
models for norm emergence [4, 17]. Agents using these models learn to choose a strat-
egy that maximizes utility. The agents in these works do not possess the notion of “nor-
mative expectation”. Many research works assume that norms exist in the society and
the focus is on how the norms can be regulated in an institutional setting such as elec-
tronic institutions [3]. Very few have investigated how an agent comes to know the
norms of the society.

Our objective in this work are two-fold. First, we propose an architecture which
can be used by individual agents to identify what the norms of the society are. The ar-
chitecture is based on observation of agent interactions and the inference mechanism
considers “signalling” (positive and negative) to be a top-level construct for identifying
potential norms when the norm of a society is being shaped. We note that a sanction
may not only imply a monetary punishment, it could also be an action that could invoke
emotions (such as an agent yelling at another potentially invoking shame or embar-
rassment on another agent), which can help in norm spreading. Agents can recognize



such actions based on their previous experience. Second, based on association rule min-
ing [9], we propose an algorithm for norm inference, called the Obligation Norm In-
ference (ONI) algorithm, which can be adapted by an autonomous agent for flexible
norm identification. The ONI algorithm identifies potential obligation norms. An ex-
ample obligation for an agent participating in an online auction is to pay for the item
it has won (OA,B (p|w))1. When obligations are violated, sanctions can be imposed on
the violating agent by other agents. In this architecture we assume that agents have the
ability to recognise sanctions. The rest of the paper describes how an observer agent
will be able to infer a norm of the society.

3 Overview of the norm identification architecture

In this section we provide an overview of the norm identification framework (called the
norm engine) that we propose for an agent to infer norms in the agent society in which
it is situated. The norm identification framework takes into account the social learning
theory [5] that suggests that new behavior can be learnt through the observation of pun-
ishment and rewards. Figure 1 shows the architectural diagram of the norm identifica-
tion framework. An agent’s norm engine is made up of several components. The circles
represent information storage components. The rounded boxes represent information
processing components, and the diamonds represent decision making components, and
the lines represent the flow of information between the components.

An agent employing this architecture follows a four-step process.
Step 1: An agent actively perceives the events in the environment in which it is

situated.
Step 2: When an agent perceives an event, it stores the event in its belief base. The

events observed by an observer are of two types: regular events and signalling events.
In the context of an auction, a regular event is an event, such as an agent bidding for an
item and winning the item. Special events are signalling events that agents understand
to be either encouraging or discouraging certain behaviour. For example when an agent
wins a particular item but does not pay in accordance to the norm of the society, the
agent can be sanctioned by the auction authorities2. Let us assume that the signal in this
context is the occurrence of the shaming event which is a form of a sanction. In this
work we assume that an agent has the ability to recognize signalling events based on its
previous experience.

Step 3: When a special event occurs, the agent stores the special event in the special
events base. It should be noted that all events are stored in an agent’s belief base but
only special events are stored in the special events base.

Step 4: If the perceived event is a special event an agent checks if there exists a
norm in itspersonal norm(p-norm) base or thegroup norm(g-norm) base. An agent

1 This is to be read as A is obliged to B to bring aboutp givenw has occurred.
2 For example, when the winner who is obliged to submit a cheque immediately after winning

does not submit the auctioneer may denounce the winner, black list the winner or even report
it to authorities such as the Police.



Fig. 1: Norm identification architecture of an agent

may possess some p-norms3 based on its past experience or preference. Ap-normmay
vary across agents, since a society may be made up agents with different backgrounds
and experiences. Ag-norm is a norm which an agent infers, based on its personal in-
teractions as well as the interactions it observes in the society. An agent infers g-norms
using the norm inference component.

When a special event occurs an agent may decide to invoke its norm inference com-
ponent to identify whether a previously unknown norm may have resulted in the occur-
rence of the special event. In the context of the auction scenario, an agent observing a
sanctioning event may invoke its norm inference component to find out what events that

3 A p-norm is the personal value of an agent. For example an agent may consider that bidding
for an item of the same type that the bidder has won previously is an action that should be
prohibited in a society. This personal value may not be shared by the agents in a society.



had happened in the past (or that had not happened in the past) may have triggered the
occurrence of the special event4. The invocation of the norm inference component may
result in the identification of ag-norm, in which case it is added to theg-normbase.

An agent, being an autonomous entity, can also decide not to invoke its norm in-
ference component for every occurrence of a special event but may decide to invoke it
periodically. When it invokes the norm inference component, it may find a newg-norm
which it adds to itsg-normbase. If it does not find ag-norm, the agent may change
some of its norm inference parameters and repeat the process again in order to find a
g-normor may wait to collect more information.

At regular intervals of time an agent re-evaluates the g-norms it currently has, to
check whether those norms hold. When it finds that ag-normdoes not apply (e.g. if it
does not find any evidence of sanctions), it deletes the norm from theg-normbase. The
operational details of the norm inference component are explained in Section 4.3. What
an agent does with the norms once it has inferred the norms is out of the scope of this
paper.

4 Obligation norm identification

In this section we explain how obligation norms can be identified using the framework
described in Section 3. Obligation norms can be identified by an agent in our architec-
ture using obligation norm inference (ONI) algorithm proposed here. First, we describe
the domain in which an obligation norm is identified. Second, we describe the event
storage components of the architecture (steps 2 and 3 of Figure 1). Third, we describe
the ONI algorithm.

4.1 e-market scenario

Let us assume that agents participate in an electronic market such as an auction in
a virtual environment (e.g. Second Life). A new agent joining a society may not be
aware of the norms associated with buying and selling goods in an electronic market.
For example, in one society the winning bidder may be obliged to deposit the money
within a day while the norm in another society could be that the winner may be obliged
to deposit the money within an hour. Failure to fulfill the obligation may result in a
sanction.

4.2 Event storage components

Let us assume that an agent is situated in an auction house where multiple auctions take
place at the same time (the electronic market scenario [13]). Let us also assume that a
new agent is not aware of the norms of the auction house. In this architecture an agent
would first observe the interactions that occur between the agents in the society. The

4 Prohibition norms may be identified by inferring the relevant events that happened in the past.
For identifying obligation norms the agent may have to reason about what events that did not
happen in the past are the likely reason for a sanction (i.e. not fulfilling an obligation)



interactions could be of two types. The first type of interaction is the one in which the
agent itself is involved and is called apersonnel interaction(e.g. bidding). The second
type of interaction is an interaction between other agents that is observed by an observer
agent, referred to as anobserved interaction. The agent records these interactions (as
events) in its belief base. An agent in the society can assume one or more of the follow-
ing three roles: a participant (P) that is involved in a personal interaction, an observer
(O) and a signaller (S).

In the auction scenario, the agent is aware of the actions performed by an agent,
which are bidding for an item (bid), winning an item (win), paying for a particular
item (pay) and receiving the item (receive). The agent also has the ability to recog-
nize a signalling action such asyell or shame5. Signalling events can either be positive
(e.g. rewards) or negative (sanctions)6.

Let us assume that a new agent (an observer) is situated in the auction. The ob-
server records interactions that occur in the context of the auction. Let us assume that a
sanctioning event occurs. Even though an observer may know that a sanctioning event
has occurred, it may not know the exact reason for sanctioning (i.e. it may not know
the norm because it only observes a sequence of actions and the agent does not know
which of the events that happened in the past or the absence of which event(s) triggered
the sanction). It will infer norms using the norm inference mechanism.

An event that is perceived by an agent consists of an event index, an observed action,
and the agent(s) participating in that event. For example an agent observing an agent
bidding will represent this ashappens(1,bid(X,item1,Y). This implies the observer be-
lieves that the first event was generated by agentX which bids for item1 to agentY . A
sample representation of events observed by an agent is given in list (1). An agent sit-
uated in an environment can sense these actions through observation or through action
logs that may be available7.

happens(1, bid(C, item1, B)
happens(2, bid(A, item1, B)
happens(3, win(A, item1, B)
happens(4, bid(A, item2, C)
happens(5, win(A, item2, C)
happens(6, sanction(B,A))
happens(7, pay(A, item2, C)

happens(8, receive(A, item2, C)


(1)

An agent records these events in its belief base. Event 6 is a sanctioning event, where
agent B sanctions agent A. The reason for the sanction is that agent A failed to pay for

5 We assume that sanctioning events such as an agent yelling at another agent for violating a
norm or an agent publicly shaming another agent by announcing that the agent is blacklisted
are observable. We note that recognizing and categorizing a sanctioning event is a difficult
problem. In our architecture we assume such a mechanism exists (e.g. based on an agent’s past
experience)

6 In this work we focus on the negative signals (i.e. sanctions)
7 For example, in Massively Multi-Player Online Role Playing Games (MMORPGs), the logs

of user interactions may be available for the observer through chat channels [6]



the item it has bought. For an observer (the agent) it may not be possible to know the
reason for this sanction unless it was specifieda priori by the agent’s designer. In open
agent societies such as open e-markets, the norms of the society may not be known to an
agent ahead of time. Additionally, the norms may evolve over time. In order to infer a
norm of the society the agent will make use of the norm inference mechanism proposed
here.

The agents have a filtering mechanism, which identifies signalling events and stores
them in the special events base. It should be noted that special events, such asyell and
shame, are categorized by an agent as sanctioning events and they are stored in the
special events base under thesanctionevent.

4.3 Norm inference component

An agent may choose to invoke its norm inference component based on its preference.
For example, it can invoke the component every time it perceives a signalling action, or
it may invoke this component periodically.

The norm inference component of an agent is made up of two sub-components. The
first sub-component makes use of the Obligation Norm Inference (ONI) algorithm to
generate candidate obligation norms. Candidate obligation norms are the norms that an
agent considers to be potential candidates to become the norms in a society. The second
sub-component is the norm verification component, which verifies whether a candidate
norm can be identified as a norm in the society.

This sub-section is organized as follows. Firstly we explain the parameters of the
ONI algorithm. Secondly we describe the internal details of ONI algorithm using the
auction example.

4.3.1 Definitions of parameters used in the algorithmThe parameters that are used
in the Obligation Norm Inference algorithm are explained below.

History Length (HL) : An agent keeps a history of the observed interactions for
certain window of time. This period of time is represented by the History length (HL)
parameter. For example, if HL is set to 20, an agent will keep the last 20 events it
observes in it its memory.

Event Sequences (ES): An event sequence is the record of actions that an agent
observes in the history. For example the event sequence observed by an agent where
HL=8 is given in list (1).

Special Events Set (SES): An agent has a set of events it identifies to be special.
These events are the signalling events. For example, the special event set can contain
events such as yell (SES ={yell}). An agent also has the capability to categorize events
into two types, sanctions and rewards. For example the action mentioned above can be
identified as a sanctioning action.

Unique Events Set (UES): This set contains the number of distinct events that
occur within a period of time. For example, a unique events set for the example given
in list (1) contains the following events8, UES ={bid,win,pay,receive,sanction}.

8 Assume that event occurrences can be modelled as simple propositions



Occurrence Probability (OP): The occurrence probability of an event E is given
by the following formula.

OP (E) = Number of occurrences of E
Total number of events in ES

Window size (WS): When an agent wants to infer norms, it looks into its history for
a certain number of recent events. For example, if the WS is set to 3, an agent constructs
an event episode(EE) with the last three events that were exchanged between agents
involved in the interaction (e.g. a pair of agents: the buyer and the seller). Construction
of event episodes is described in the next sub-section. It should be noted that an EE is a
subsequence9 of ES.

Norm Identification Threshold (NIT) : When coming up with candidate norms, an
agent may not be interested in events that have a lower probability of being a norm.
For example, if an agent sets NIT to be 50 (in a scale from 0 to 100), it indicates it is
interested to find all sub-episodes10 of an event episode that have a 50% chance of being
a candidate norm. The algorithm uses the NIT on three occasions. As the values of NIT
for each of the occasions can be varied by an agent, there are three variables which are
NITa, NITb andNITc.

Norm Inference Frequency (NIF): An agent may choose to invoke a norm infer-
ence component every time it observes a special event, or it may invoke the component
periodically. An agent has a parameter called the norm inference frequency (NIF) that
specifies what the time interval between two invocations of the norm inference compo-
nent are. An agent, being an autonomous entity, can change this parameter dynamically.
If it sees that the norm in a society is not changing, then it can increase the waiting pe-
riod for the invocation of the norm inference component. Alternatively, it can reduce
the time interval if it sees the norm is changing.

4.3.2 Obligation Norm Inference (ONI) algorithm
4.3.2.1 Overview of the algorithm

There are four main steps involved in the Obligation Norm Inference algorithm (see
algorithm 1). First, event episodes of a certain length are extracted from event sequences
that an agent observes that are exchanged between agents. These event episodes are
stored in the event episode list (EEL). Second, based on the events in the special event
set (e.g. sanctioning events), the event episodes in EEL are separated into two lists. The
first list contains all event episodes that contain at least one sanctioning event called the
Special Event Episode List (SEEL). The second list contains all event episodes that do
not contain sanctioning events called the Normal Event Episode List (NEEL). Third,
using SEEL, all sub-episodes which have occurrence probabilities greater than or equal
to NITa are extracted and stored in Norm-Related Event Episode List (NREEL) based
on a modified version of the WINEPI algorithm [11]. Fourth, for each event episode in
NREEL, all supersequences whose occurrence probabilities are greater than or equal to

9 A subsequence is a sequence that can be generated from a sequence by removing certain
elements from the sequence without altering the order of the elements in the sequence. For ex-
ample, “anna” is a subsequence of “banana”. Conversely, one of the supersequences of “anna”
is “banana”.

10 A sub-episode is a subsequence of an event episode



NITb are extracted and stored in a temporary list calledtempEEList. Based on the su-
persequences stored intempEEList, the modified version of the WINEPI algorithm can
identify all permutations of supersequences whose occurrence probabilities are greater
than or equal toNITc which are stored in Candidate Obligation Norm List (CONL).
These four steps are explained in detail in the following sub-sections.

Algorithm 1 : Obligation Norm Inference algorithm (main algorithm)

begin1

Create event episodes list (EEL);2

Create special event episodes list(SEEL) and normal event episodes list3

(NEEL);
Extract norm related event episodes list (NREEL) from SEEL;4

Create Candidate Obligation Norm List (CONL) using NEEL and NREEL ;5

/* Algorithm 2 */
end6

4.3.2.2 Creating event episodes
An agent records other agents’ actions in its belief base. We call the sequence of

events that were recorded in the belief baseevent sequences(ES). Let us assume that
there are three agents A, B and C, participating in an auction as given in list (1) and
an observer D. Agent C bids for item1 from agent B. Agent A bids for item1 from
agent B. Agent A wins item1. Agent A then bids for item2 from agent C. Agent A wins
item2. Agent A is sanctioned by agent B. Agent A pays agent C for item2. Agent A
receives item2 sent by agent C11. An agent has a certain history length (HL). An agent
at any point of time stores the history of observed interactions for the length equal to
HL. When the norm inference component is invoked, the agent extractsn events that
happened between a pair of agents from the recorded history (event sequences (ES))
wheren=WS. We call the retrieved event sequence theevent episode(EE). A sample
event episode from an observer’s view-point (agent D) is given below. The left hand
side of the arrow indicates that the agents involved in the interaction are A and B. The
right hand side of the arrow contains the event episode. A hyphen separates one event
from the next.

{A,B} → (happens(2, bid(A, item1, B)−
happens(3, win(A, item1, B)− happens(6, sanction(B,A)))

Based on the what an agent observes (e.g. the event sequence given in list (1)), the
observer may assume that something that agent A did in the past may have caused the
sanction. It could also be the failure of agent A to perform certain action(s) might have
caused a sanction. In this work we concentrate on the latter12. Agent D then extracts the
sequence of events (theevent episode) that took place between A and B based on the
event sequence stored in its history. To simplify the notation here, only the first letter
of each event will be mentioned from here on (e.g.b for bid) and also the agent names

11 Note that the representation of these actions are from one agent’s point of view (e.g. agent A’s
point of view). Therefore actions such assendwhich is from the viewpoint of agent C are not
modelled, but a related action i.e.receiveis modelled from A’s view-point.

12 In previous work we have demonstrated how the former can be identified [16].



are omitted. As the sequence caters for temporal ordering of events, the event ids are
omitted. Thus the event episode for interactions between agents A and B shown above
will be represented as (

{A,B} → b− w − s
)

The following list (2) shows a sample event episode list (EEL) that contains ten
events occurring between a pair of agents that are observed by an agent where WS=5.
Note that the Unique Event Set (UES) in this case include events{b,w,p,r,s} which
stand for{bid,win,pay,receive,sanction} respectively.

{A,B} → (b− w − s)
{C,D} → (w − p− r)
{E,F} → (b− w − p− r − b)
{G, H} → (p− r − b− w)
{I, J} → (r − b− b− w − s)
{K, L} → (b− w − p)
{M,N} → (r − b− w − p− r)
{O,P} → (b− w − p− r)
{R,S} → (r − b− w − s)
{T,U} → (r − b− w − p)


(2)

4.3.2.3 Creating special and normal event episode lists
Note that some event episodes in EEL have sanctions as one of the events. The

agent identifies the sanction events from the special events set (SES). Using EEL, an
agent creates two lists for further processing, one with event episodes that contain a
sanctioning event and the other containing event episodes without sanctions. The list
that contains event episodes with sanctioning events is called the special event episode
list (SEEL). The other list is called the normal event episode list (NEEL).

The SEEL obtained from EEL is given in the left in (3). NEEL has the remaining
episodes that do not contain a sanctioning action (shown in the right of (3)).

 (b− w − s)
(r − b− b− w − s)
(r − b− w − s)

 ,



(w − p− r)
(b− w − p− r − b)
(p− r − b− w)
(b− w − p)
(r − b− w − p− r)
(b− w − p− r)
(r − b− w − p)


(3)

4.3.2.4 Generating the norm related event list (NREEL)
From the SEEL, an agent can identify events that have the potential to be associated

with sanctions. For example, from the SEEL shown in the left of (3), the agent may
infer that the sub-episodesb-w, b, or w could be the reason for a sanction as they occur
in all the event episodes in SEEL. In the case of prohibition norms the events that
precede a sanction can be potentially linked to sanction due to causality. In the case of
obligation norms, it is the absence of an event or a sequence of events that might be
the cause of the sanction. In both these types of norms, the agent has to identify the
sequences of events that occur frequently before the occurrence of a sanctioning action.



In the case of a prohibition norm the frequency of occurrence may correlate with norm
identification (reported in previous work [16]). In the case of an obligation norm, the
agent first has to find the frequently occurrence sequence(s), which are then stored in
the norm-related event list (NREEL). Let us refer to an event episode in NREEL asα.
Second, an agent has to identify all the supersequences ofα in NEEL whose occurrence
probability is greater than or equal toNITa, which is added to the candidate obligation
norm list (CONL). The construction of NREEL is discussed in this sub-section and the
construction of CONL is discussed in the next sub-section.

In order to identify these norm-related events the agent uses a modified version of
the WINEPI algorithm [11], an association rule mining algorithm13. The modification,
reported in previous work [16], can identify candidate norms that are obtained by con-
sidering “permutations with repetition” when constructing sub-episodes. Based on the
SEEL, an agent can generate the NREEL. Expression (4) shows the SEEL on the left
of the arrow and the NREEL generated from the SEEL on the right of the arrow when
NITa is set to 0. The occurrence probability of an event episode in NREEL is given
in square brackets. WhenNITa is set to 0, all possible subsequences of event episodes
in SEEL are generated. WhenNITa is set to 100% the algorithm identifies the follow-
ing norm-related event episode list{b-w,b,w}. An agent, being an autonomous entity,
can vary theNITa parameter to identify the norm-related events. Note that if an event
episode is frequent, all its subsequences are also frequent. For example ifb-w appears
100% of the time (i.e. the occurrence probability is 1), all its subsequences also appear
100% of the time.

 (b− w − s)
(r − b− b− w − s)
(r − b− w − s)

 →



(b− w)[1]
(b)[1]
(w)[1]
(r − b− w)[.66]
(r − b)[.66]
(r − w)[.66]
(r)[.66]
(r − b− b− w)[.33]
(r − b− b)[.33]
(b− b− w)[.33]
(b− b)[.33]


(4)

4.3.2.5 Identifying candidate obligation norm list (CONL)

13 Association rule mining [9] is one of the well known fields of data mining where relationships
between items in a database are discovered. For example, interesting rules such as 80% of peo-
ple who bought diapers also bought beers can be identified from a database.Some well known
algorithms in the data mining field can be used for mining frequently occurring episodes (i.e
mining association rules) [1, 11]. A limitation of the well-known Apriori [1] algorithm is that
it considers combinations of events but not permutations (e.g. it does not distinguish between
event sequencesb-wandw-b). WINEPI [11] addresses this issue, but it lacks support for iden-
tifying sequences that are resultants of permutations with repetition (e.g. from sub-episodes of
length one, e.g.b andw, the algorithm can generate sub-episodes of length two which arebw
andwb, but notbb andww). Permutations with repetition are important because there could
be a norm which sanctions an agent from performing the same action twice.



The pseudo code for generating CONL is given in Algorithm 2. In order to identify
the obligation norms, the agent has to identify those supersequences in NEEL, that
contain the event episodes in NREEL whose occurrence probabilities are greater than
or equal toNITb. These supersequences are stored in a list (tempEEListin this case).

Based on the supersequences stored intempEEList, the algorithm (previous work
[16]) can identify all permutations of supersequences whose occurrence probabilities
are greater than or equal toNITc. Such supersequences are stored in the candidate
obligation norm list (CONL).

For example, let us consider an event epsiodeb-w is the only event episode stored in
the NREEL list. Assume this NREEL is the input to Algorithm 2 and theNITb is set to
50%. Expression (5) shows the NEEL on the left of the arrow and thetempEEListthat
is generated from the NEEL on the right. Note that the NEEL on the left contains seven
event episodes buttempEEListcontains six out of seven event episodes that contain
b-w. These six event episodes are supersequences ofb-w.

Algorithm 2 : Pseudocode to create candidate obligation norm list (CONL)
Input : Norm-Related Event Episode List (NREEL), Normal Event Episode List

(NEEL), Norm Identification Threshold (NIT)
Output : Candidate Obligation Norm List (CONL)
CONL = ∅;1

for an event episode NREE∈ NREELdo2

tempEEList=∅;3

tempCounter = 0;4

occurrenceCounter = 0;5

foreachevent episode EE∈ NEELdo6

occurrenceCounter++;7

if EE is a supersequence of NREEthen8

Add EE to tempEEList;9

tempCounter++;10

end11

end12

OP(tempEEList) = tempCounter/occurrenceCounter;13

if OP(tempEEList)≥ NITb then14

Use modified WINEPI algorithm to extract all candidate obligation15

norms (Input: tempEEList, Unique Event Set (UES), Window Size(WS),
Norm Inference Threshold (NITc), Output: Candidate norms);
Add candidate obligation norms to CONL;16

end17

return CONL;18

end19





(w − p− r)
(b− w − p− r − b)
(p− r − b− w)
(b− w − p)
(r − b− w − p− r)
(b− w − p− r)
(r − b− w − p)


→


(b− w − p− r − b)
(p− r − b− w)
(b− w − p)
(r − b− w − p− r)
(b− w − p− r)
(r − b− w − p)

 (5)

From tempEEListthe CONL can be generated. The left hand side of expression (6)
shows thetempEEList. The right hand side of expression (6) contains all permutations
of supersequences ofb-w that can be obtained fromtempEEListand their occurrence
probabilities intempEEList(in square brackets).


(b− w − p− r − b)
(p− r − b− w)
(b− w − p)
(r − b− w − p− r)
(b− w − p− r)
(r − b− w − p)

 →



(b− w − p)[0.83]
(b− w − r)[0.5]
(b− w − p− r)[0.5]
(r − b− w)[0.5]
(b− w − b)[0.16]
(b− w − p− b)[0.16]
(b− w − p− r − b)[0.16]
(p− r − b− w)[0.16]
(p− b− w)[0.16]


(6)

Assuming thatNITc is set to 50%, the supersequences that will be identified as
CONL are(b-w-p,b-w-r,b-w-p-r,r-b-w)whose occurrence probabilities are(0.83,0.5,0.5,0.5)
respectively. As the occurrence probabilities of(b-w-b,b-w-p-b,b-w-p-r-b,p-r-b-w,p-b-
w) are less thanNITc, these are not included in the CONL. Note that the modified
WINEPI algorithm is used twice, first time to obtain the NREEL from the SEEL (not
shown here) and the second time for obtaining the CONL from the NEEL using the
NREEL (line 15 of Algorithm 2).

For every event episode in the NREEL, a new CONL is generated. Having compiled
a set containing candidate obligation norms, the agent passes this information to the
norm verification component to identify norms. This process is iterated until there are
no elements in NREEL. The norm verification process is explained in the next sub-
section.

4.4 Norm verification

In order to find whether a candidate norm is a norm of the society, the agent asks an-
other agent in its proximity. This happens periodically (e.g. once in every 10 iterations).
An agent A can ask another agent B, by choosing the first candidate norm (sayb-w-p
for which it has a higher occurrence probability) and asks B if it knows whether the
obligation normOX ,Y (p|(b − w)) is a norm of the society (i.e. an agent is obliged to
pay after bidding and winning). If the response is affirmative, A stores this norm in its
set ofidentified norms. If not, A moves on to the second candidate norm in its list14.
14 Other alternative mechanisms are also possible. For example, an agent could ask for all the

candidate norms from another agent and can compare them locally.



In the case of the running example, the supersequenceb-w-p is chosen to be com-
municated to the other agent. It asks another agent (e.g. an agent who is the closest)
whether it thinks that the given candidate norm is a norm of the society. If it responds
positively, the agent infersOX ,Y (p|(b − w)) to be a norm. If the response is negative,
this norm is stored in the bottom of the candidate norm list.

It then asks whether the failure to fulfill the obligation normOX ,Y (r |(b − w)) is
the reason for the sanction. Otherwise, the next event episode in the candidate norm
list is chosen for verification. This process continues until a norm is found or no norm
is found from the event episodes in the candidate norm list. If no norm is found, the
agent considers the next event episode in the NREEL and uses Algorithm 2 to identify
candidate obligation norms. This process continues until there are no event episodes in
the NREEL. Even in the case of identifying a candidate norm, the agent continues the
process to identify any co-existing norms.

Note that an agent will have two sets of norms: candidate norms and identified
norms. Expression (7) shows the two sets of norms, the candidate norms on the left
of the arrow and the identified norms on the right. Once an agent identifies the norms
of the system and finds that the norms identified have been stable for a certain period
of time, it can forgo using the norm inference component for a certain amount of time
(based on the norm inference frequency (NIF)). It invokes the norm inference compo-
nent periodically to check if the norms of the society have changed, in which case it
replaces the norms in the identified list with the new ones (or deletes the norms which
are no more applicable).

(b− w − p)
(b− w − r)
(b− w − p− r)
(r − b− w)

 →
(
b− w − p

)
(7)

5 Discussion

The main contributions of the paper are two-fold. First, the issue of norm identification
has not been dealt with by many researchers in the field of normative multi-agent sys-
tems. To this end, in this paper we have proposed an architecture for norm identification
and have demonstrated how one type of norm - the obligation norm can be identified by
an agent. Secondly, we have proposed the Obligation Norm Inference (ONI) algorithm,
an algorithm based on data mining, that can be used to generate candidate obligation
norms. Using a simple example, we have demonstrated how the norm inference mech-
anism works. An adaptive agent employing the norm inference mechanism can infer
obligation norms by varying different parameters of the algorithm.

We believe this architecture can be used in several settings apart from e-commerce
environments. For example, the norm identification architecture can be used to infer
norms in Massively Multi-player Online Role Playing Games (MMORPGs) such as
World of Warcraft (WoW). Players involved in massively multi-player games perform
actions in an environment to achieve a goal. They may play as individuals or in groups.
When playing a cooperation game (e.g. players forming groups to slay a dragon), indi-
vidual players may be able to observe proscriptions of actions (prohibition norms) and



obligations that need to be satisfied (obligation norms). The normative architecture pro-
posed in this paper can be used to identify norms that are being formed. For example
a norm could be that a player who has helped another player twice to escape from a
dragon expects the other player to help him escape from the dragon if the need arises.
This norm may not be part of the protocol defined for playing the game but may evolve
during the game. Such a norm can be identified by this mechanism.

An interesting addition to this work is on identifying conditional norms. For exam-
ple, in one society, the norm associated with the deadline for the payment (i.e. obli-
gations with deadlines as in [8]) may be set to 120 minutes after winning the item.
Depending upon what an agent has observed, agents may have subtly different norms
(e.g. one agent may notice thatp follows w after an average of 100 minutes while an-
other may notice this to happen after 150 minutes). Both these agents could still infer
the obligation norm but the deadlines they had noticed can be different. Another in-
teresting avenue for research is to investigate employing string based pattern matching
algorithms used in the field of bio-informatics to extract interesting sequences and miss-
ing sequences.

6 Conclusion

This paper addresses the question of how obligation norms can be identified in an agent
society. To this end, this paper uses the norm inference architecture for identifying obli-
gation norms. This paper proposes Obligation Norm Inference (ONI) algorithm. An
agent that employs ONI algorithm makes use of data mining approach to infer obliga-
tion norms. This has been demonstrated in the context of a simple e-market scenario.

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in
large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors,Proceedings
of 20th International Conference on Very Large Data Bases (VLDB’94), Santiago de Chile,
Chile, pages 487–499. Morgan Kaufmann, 1994.

2. Giulia Andrighetto, Rosaria Conte, Paolo Turrini, and Mario Paolucci. Emergence in
the loop: Simulating the two way dynamics of norm innovation. In Guido Boella, Leon
van der Torre, and Harko Verhagen, editors,Normative Multi-agent Systems, number 07122
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

3. Josep Ll. Arcos, Marc Esteva, Pablo Noriega, Juan A. Rodriguez-Aguilar, and Carles Sierra.
Environment engineering for multiagent systems.Engineering Applications of Artificial In-
telligence, 18(2):191204, 2005.

4. Robert Axelrod. An evolutionary approach to norms.The American Political Science Review,
80(4):1095–1111, 1986.

5. Albert Bandura.Social Learning Theory. General Learning Press, 1977.
6. Guido Boella, Leendert Torre, and Harko Verhagen. Introduction to the special issue on

normative multiagent systems.Autonomous Agents and Multi-Agent Systems, 17(1):1–10,
2008.

7. Magnus Boman. Norms in artificial decision making.Artificial Intelligence and Law,
7(1):17–35, 1999.



8. Henrique Lopes Cardoso and Eugenio Oliveira. Directed deadline obligations in agent-based
business contracts. InProceeding of the international workshop on Coordination, Organi-
zation, Institutions and Norms in agent systems (COIN@AAMAS 2009), 2009.

9. Aaron Ceglar and John F. Roddick. Association mining.ACM Computing Surveys, 38(2):5,
2006.

10. Fabiola Ĺopez y Ĺopez. Social Powers and Norms: Impact on Agent Behaviour. PhD the-
sis, Department of Electronics and Computer Science, University of Southampton, United
Kingdom, 2003.

11. Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences.Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

12. Martin Neumann. A classification of normative architectures. InProceedings of World
Congress on Social Simulation, 2008.

13. Juan A. Rodrguez-aguilar, Francisco J. Martn, Pablo Noriega, Pere Garcia, and Carles Sierra.
Towards a test-bed for trading agents in electronic auction markets.AI Communications,
11:5–19, 1998.

14. Michael Rymaszewski, Wagner James Au, Mark Wallace, Catherine Winters, Cory On-
drejka, Benjamin Batstone-Cunningham, and Philip Rosedale.Second Life: The Official
Guide. SYBEX Inc., Alameda, CA, USA, 2006.

15. Bastin Tony Roy Savarimuthu and Stephen Cranefield. A categorization of simulation works
on norms. In Guido Boella, Pablo Noriega, Gabriella Pigozzi, and Harko Verhagen, editors,
Normative Multi-Agent Systems, number 09121 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

16. Bastin Tony Roy Savarimuthu, Stephen Cranefield, Maryam A. Purvis, and Martin K. Purvis.
Norm identification in multi-agent societies. Discussion Paper 2010/03, Department of In-
formation Science, University of Otago.

17. Yoav Shoham and Moshe Tennenholtz. Emergent conventions in multi-agent systems: Initial
experimental results and observations. InProceedings of third International Conference on
Principles of Knowledge Representation and Reasoning, pages 225–231, San Mateo, CA,
1992. Morgan Kaufmann.

18. Phillip Stoup. Athe development and failure of social norms in second life.Duke Law
Journal, 58(2):311–344, 2008.

19. Javier V́azquez-Salceda. Thesis: The role of norms and electronic institutions in multi-
agent systems applied to complex domains. the harmonia framework.AI Communications,
16(3):209–212, 2003.

20. Adam Walker and Michael Wooldridge. Understanding the emergence of conventions in
multi-agent systems. In Victor Lesser, editor,Proceedings of the First International Confer-
ence on Multi–Agent Systems, pages 384–389, San Francisco, CA, 1995. MIT Press.

View publication stats

https://www.researchgate.net/publication/221435623



