
Chapter 6

Creating ontologies for a collaborative, multi-

agent based workflow system

Agent based workflow management system has been an active area of research

for the known benefits such as collaborative process management in a dynamic

and distributed business environment. In this paper we present the architecture of

our agent-enhanced and dynamic workflow management system and discuss the

creation and usage of ontologies in our system. In particular, we discuss the de-

velopment of a set of modular ontologies, which correspond to different entities

or stakeholders in our system. For example, the terms used in the interaction

between various agents that form the building blocks of our system are kept in

the workflow ontology module. Similarly, the ontology associated with a specific

application domain is maintained in a separate module. In addition, the ontology

associated with a set of agents that form a particular agent society due to their

shared behaviors and concerns are stored separately (such as seller agents ontol-

ogy in an e-commerce application). The relationships between these modules are

described in more detail later in this chapter. We also explain how these different

types of ontologies are created, managed and used dynamically.

1 Introduction

Most of the commercially available workflow management systems do not offer

sufficient flexibility for distributed organizations that participate in the global

market. These systems have rigid, centralized architectures that do not operate

across multiple platforms (Meilin et.al, 1998, Shepherdson et.al, 1998). Employ-

ing a distributed network of autonomous software agents that can adapt to chang-

ing circumstances would result in an improved workflow management system. In

the past, WfMS were used in well-defined activities, such as manufacturing,

where the processes tend to be more established and stable. But in the current

climate WfMS may be used for more fluid business processes, such as e-

commerce, or in processes involving human interactions, such as the software

development process. In such situations, it is not always possible to predict in

advance all the parameters that may be important for the overall processes. This

gives rise to the need of adaptive systems. Our previous works (Fleurke et.al,

2003, Savarimuthu et. al 2004a, Savarimuthu et.al 2005b) describe the ad-

vantages of our agent-based framework JBees (Fleurke et.al 2003), such as dis-

tribution, flexibility and ability to dynamically incorporate a new process model.

The process models specify the flow of activities in a business process. The

meaning associated with various terms and activities specified in these models

are defined in ontology. In our system, for each process model, there are a corre-

sponding set of ontology modules. This modular approach with regard to organ-

izing various pieces of knowledge helps the maintenance and dynamic change to

the knowledge base. As an example, consider that we are dealing with an e-

commerce application selling microwave ovens. If we expand our application,

and now include selling computers, we only need to update the application do-

main ontology to include terms associated with the computer. We do not have to

modify the ontology associated with the seller agent (i.e the concepts associated

with setting a price, sending a bill, receiving payment, and shipping the product).

In this chapter we describe the details associated with various types of ontologies

and their relationship with each other.

2 Background

2.1 Coloured Petri Nets (CPNs)

Our system uses Coloured Petri nets (CPN) to model, simulate and execute

workflow processes. Petri nets (Murata 1989) are a formalism and have an as-

sociated graphical notation for modelling dynamic behaviour of a system. The

state of the system is represented by places (denoted by hollow circles) that can

contain token (denoted by symbols inside the places). The possible ways that the

system can evolve are modelled by defining transitions (denoted by rectangles)

that have input and output arcs (denoted by arrows) connected to places. The

system dynamics can be enacted (non-deterministically) by determining which

transitions are enabled by the presence of tokens in the input places, selecting

one and firing it, which results in tokens being removed from its input places and

new tokens being generated and placed in the output places.

CPNs (Jensen 1992) are an elaboration of ordinary Petri nets. In a coloured Petri

net, each place is associated with a `colour', which is a type (although the theory

of CPNs is independent of the actual choice of type system). Places can contain

a multiset of tokens of their declared type. When a transition is fired, the match-

ing tokens are removed from the input places, and then multiset expressions an-

notating the output arcs are evaluated to generate the new tokens to be placed in

the output places. If the expression on an output arc evaluates to the empty mul-

tiset then no tokens are placed in the connected place. Figure 1 shows a simple

Petri net process model. In our system, CPNs are used to model processes.

Figure. 1. A simple Petri Net model

Some reasons for preferring Petri net modelling to other notations in connection

with workflow modelling are:

1. They have formal semantics, which make the execution and simulation of Pe-

tri net models unambiguous. It can be shown that Petri nets can be used to mod-

el workflow primitives identified by the Workflow Management Coalition

(WfMC).

2. Unlike some event-based process modelling notations, such as dataflow dia-

grams, Petri nets can model both states and events.

3. There are many analysis techniques associated with Petri nets, which make it

possible to identify 'dangling' tasks, deadlocks, and safety issues.

Currently, we are using JFern (Nowostawski, 2003) - a CPN-simulator and en-

actment engine to design and execute the models.

2.2 Workflows and multi-agent systems

In the context of WfMSs, agent technology has been used in different ways. In

some cases the agents fulfil particular roles that are required by different tasks in

the workflow. In these cases the existing workflow is used to structure the coor-

dination of these agents (Nissen 2000 and Jennings et.al 2000). An example of

this approach is the work by Nissen in designing a set of agents to perform activ-

ities associated with the supply chain process in the area of e-commerce (Nissen

2000). In other cases, the agents have been used as part of the infrastructure as-

sociated with the WfMS itself in order to create an agent-enhanced WfMS

(Stormer 2001 and Wang et.al 2002). These agents provide an open system with

loosely coupled components, which provides more flexibility than the traditional

systems. Some researchers have combined both of these approaches, where an

agent-based WfMS is used in conjunction with specialized agents that provide

appropriate application-related services.

In our framework, JBees (Fleurke et.al 2003), we have used the software agents

both as part of the WfMS infrastructure as well as entities/resources that perform

certain tasks associated with the business domain. Each agent has an interaction

protocol model describing how to communicate with the other agents and what

actions to perform when a new message (by another agent) is received. In this

context the workflow is a set of interaction protocols which are executed towards

accomplishing a particular process such as processing an insurance claim or an

order entry request to purchase a product.

The agent-based infrastructure facilitates the dynamic incorporation of changed

models into the system and thereby is more flexible to the changes that might

occur in the environment. The framework, also provides support for inter and

intra organizational co-operation in a distributed environment.

2.3 Existing Architecture

Our research is focused on developing an agent-based WfMS, where the work

associated with running a WfMS has been partitioned among various collaborat-

ing agents that are interacting with each other by following standard agent com-

munication protocols. JBees is based on Opal (Purvis et.al 2002) and uses the

CPN execution tool JFern. The processes are modeled using CPNs. A first de-

scription of JBees can be found in our previous papers (Fleurke et.al, 2003, Sava-

rimuthu et. al 2004a, Savarimuthu et.al 2005b). Figure 2 shows the architecture

of our multi-agent based workflow management system. Our enhanced system

consists of seven Opal agents, which provide the functionality to control the

workflow. The manager agent provides all functionality the workflow manager

needs, such as creation and deletion of tasks, roles and process definitions, in-

stantiation of new process instances and creation of resource agents. The process

agent executes a process instance. Each resource in the system has its own re-

source agent. Every resource in the system gets registered to one of the broker

agents that allocate the resources to the process. The storage agent manages the

persistent data that is needed. The monitor agent collects all the process specific

data and sends them to the storage agent. The control agent continuously looks

for anomalies to the criteria specified by the human manager and reports the vio-

lations to these criteria to the manager agent. The manager agent provides infor-

mation to the human manager, which can be used for a feedback mechanism.

Figure. 2. Architecture of the existing system

Figure 3 shows an order entry process for purchasing a book. The tasks include

order entry, inventory check, credit check, evaluation, approval, billing, ship-

ping, archiving and the task associated with writing a rejection letter. A task can

be represented as a sub process and linked to the main process model forming a

hierarchy of process models. Each task will be assigned to an appropriate re-

source agent. More details on how the framework works can be found in our

previous works.

As noted, the details about some of the more complex task can be elaborated on

another sub-process. At this stage the agent responsible for that particular task,

could be interacting with other resources/agents in order to accomplish the task.

We use the Interaction Protocol approach to model this behaviour (as described

in the next section).

Figure. 3. Order entry process model for purchasing a book online

2.4 The Interaction Protocols (IP)

Interaction Protocols (IP) have been used in the literature for modelling the inter-

actions of an agent with other agents (Scott et.al 2000). Interaction protocols are

better intuitive models of how agents will interact than the message based com-

munication between two agents. We use Colored Petri nets to model this interac-

tion. The advantage of using an IP is that an agent is aware of the overall model

of the interaction. Some of the error handling mechanisms and global data han-

dling mechanisms could be assigned to the agent. This gives a clear picture of

various conversations an agent could be involved in.

Conversation structures are separated from the actions that are taken when an

agent is involved in a conversation, facilitating the reuse of conversations in mul-

tiple contexts (Purvis et.al 2002). The transitions that represent the actions can be

implemented accordingly depending upon the requirements. The definitions of

these actions are represented in the ontology, which is stored in persistently in

the distributed databases.

Figure. 4. Interaction protocols of the auction scenario

Figure 4 shows the interaction protocols that each agent executes in an auction

scenario involving buyers and sellers. This e-business scenario is expressed us-

ing the interaction protocols. The agents involved in the scenario are the seller

agent, auctioneer agent and the buyer agent. The seller agent sets the price of the

product and sends this information to the auctioneer agent. The auctioneer agent

broadcasts the initial starting price to the potential buyer agents with a time out

limit. The buyer agents send their bids to the auctioneer agents. The auctioneer

agent again broadcasts the reserve price to all the buyer agents till no agent bids.

If the final price is greater than the reserve price set by the seller the auctioneer

sells the product to the buyer.

Figure. 5. Overall business process model of the auction scenario

In Figure 4, the modeller has shown specifically the actions taken by each agent

and how each agent interacts with the other agents. The auction workflow de-

scribed in this section uses the interaction protocols. But the same workflow

could also be modelled as a process centric model shown in figure 5. It can also

be argued that both of these approaches can be used together under certain cir-

cumstances. The process model shown in figure 5 provides an overview of the

activities included in the workflow. In this model, the actions taken by each

agent and how it interacts with other agents may not be as explicit. At each tran-

sition in the process model, there is some interactions between the agents in-

volved. For example in the transition sendBidAmount, the buyer agent sends a

bid amount to the auctioneer agent. In this case, the process agent that executes

this transition can instantiate two agents that adhere to the interaction protocols

shown in figure 4. Thus, by combining both ways of modeling, the user is able to

understand the workflow in a better way (from the overall process view and the

individual agent process view). This provides a richer meaning to the scenario

that both models had failed to provide individually, in certain cases.

3 Architectural support for ontologies in our

framework

Ontologies are used to define the meaning of the terms used in the agent com-

munication. The issues associated with representation and usage of ontologies

have been tackled by several researchers (Cranefield et.al 2003 and Dickinson

et.al 2003). There can be many benefits in using ontology including the follow-

ing:

1) Ontologies are used to build a set of vocabulary for better understanding

of the application domain, which can be used consistently throughout

the system.

2) Ontologies can facilitate a common understanding of concepts between

different agents in the system.

3) By separating the knowledge base from the rest of the process, one can

dynamically incorporate a new set of ontologies.

4) When a new agent joins the system, the agent can easily access and pro-

cess the ontology it has to use.

Figure 6 shows various types of ontologies that are supported and their relation-

ship with each other. These include workflow ontology, agent specific ontology,

institutional ontologies and domain specific ontologies or application ontologies.

In our architecture we have four kinds of ontologies. The architecture is modular

which helps organizing various parts of the overall ontology. This modular ap-

proach helps easier maintenance and support for the dynamic change in ontolo-

gies. The first kind of ontologies are workflow ontologies. The ontologies stored

in this level is pertinent to the concepts that the workflow framework uses. The

next levels of ontologies is agent specific ontologies. Societal/institutional ontol-

ogies, are the third kind of ontologies which store the common concepts that the

agents have to understand so that they can be a part of a particular society. The

last kind of ontology, the application ontology, is specific to the domain under

consideration such as Online Purchasing, Apparel Manufacturing, and Software

Development etc.

Figure. 6. Ontology architecture of the system

3.1 Workflow ontology

The ontologies for workflow systems are the set of concepts and associated vo-

cabulary and meaning these concepts bring. The workflow management system

has concepts that are associated with the building and the operation of the sys-

tem. The prototype workflow system that we have built has a set of concepts that

all the agents, should understand. For example the agents should understand

what the following terms such as RESOURCE_IS_AVAILABLE,

GET_PROCESS_DEFINITION, GET_TASK_DEFINITION etc. mean in the

workflow scenario.

3.2 Agent ontology

The agents involved in an e-commerce scenario in online buying and selling of

goods would be buyer agents and seller agents. The buyer sends a request for an

item to the seller. In the request the buyer sends the details about the product.

The buyer’s understanding of the product is stored in ontology and also the terms

that the buyer uses in the message. At this level, the ontology is made up of the

actions that an agent understands. For example the terms referred to by the buyer

agent could be REQUEST_PRODUCT_DETAIL, AGREE_TO_BUY,

MAKE_PAYMENT etc. Ontologies related to the seller agent could be INVEN-

TORY_CHECK, CREDIT_CHECK, BILLING, SHIPPING etc.

3.3 Ontology for societies

The seller agents form societies by adhering to some common rules and concepts

such as not selling the defective/expired items. At the society level certain code

of conduct may have to be adhered to. For example the members of the society

have to follow certain laws when they are engaged in trading certain products in

the context of e-commerce such as not to sell alcoholic drink to young customers

(as specified in the local laws). Therefore the concept of legal age for purchase

of such items will be defined at this level. At this point, we do not have any

mechanism for detection and enforcement of legal activities to be carried out by

the members of the society.

3.4 Application/Domain specific ontology

The last kind of ontologies are domain specific or application specific ontologies.

For an e-commerce scenario that involves buying and selling of products, the

concepts that are common to all the lower level entities (such as agents) can be

defined. For example, description of the product (make, model etc), the mode of

accepted payment when buying a product (credit card/currency

used/drafts/cheques) are defined. The concepts associated with the sales tax that

has to be collected at the time of the purchase is an issue that is dealt with at this

level.

4 Representation of ontologies

In our workflow management system, the workflow modeler creates/updates the

relevant set of ontologies when creating the process models.

1) We provide a simple editor to enter the details of the concepts described in the

different levels of ontology. The ontology will also provide a mapping of task

names to functions. The function will be defined in the same ontology. The user

interface that we have provided will obtain the details about concepts (in name-

value pairs) as well as the definition of the functions. The ontologies are stored

in the XML format (for more details refer to the example provided in section 5).

2) Each higher level of ontology extends the basic level of ontology. For exam-

ple, the application ontology extends the workflow ontology.

3) For each ontology module, a java class is created from the XML file.

4) The terms and functions used in the process model are resolved by refering to

these ontologies through ontology query agent which is aware of the ontology

structure. Figure 6 shows the different stages of ontology creation.

Figure. 7. Flow diagram of the ontology creation process

If a term is not found in the existing ontology structure, it can be added to the

appropriate level of the ontology by the authenticated user of the system. When

a new agent from an external platform wants to use the ontology, it can do so by

contacting the ontology query agent as shown in figure 6. The query agent is

familiar with the hierarchical structure associated with particular agent ontology.

The query agent would return the name-value pairs of the described ontology to

the external agent.

5 Ontology examples

Figure 8 describes a scenario that explains how ontology is used in our frame-

work. The process model shown on the left side of the diagram is the process

model of a seller agent. When a buyer agent request for a price of the product,

the setPrice transition is fired. The setPrice transition executes the ‘action code’.

Action code is the code that has the instructions about what happens when a tran-

sition is fired. In our example the transition invokes the SellerOntology to find

out the price of the product. The SellerOntology checks with the SellerInstitu-

tionOntology to verify if the rules laid down by the institution is followed. Each

product that is sold should correspond to the description specified in the Buy-

erSellerApplicationOntology. The concepts that are common to the application

domain are defined in the Application Ontology.

 Figure. 8. A simple buyer, seller example to demonstrate the use of ontologies in our

system

The sellProduct transition produces a bill after considering the details such as the

cost of the products purchased and the quantity. The method called calculateBill

computes the cost associated with this transaction (this is shown in Figure 9).

For a more extended version of this example, the details such as tax rate and

shipping cost will be considered as well.

To achieve all the above-mentioned details, sellProduct transition has to refer to

various ontologies such as: Seller Ontology, Buyer Ontology, Seller Institution

Ontology, Buyer Institution Ontology apart from Workflow Ontology and Ap-

plication Ontology. The details that are stored in Seller Ontology include the

functions specified in the XML form for calculateBill, acceptedMethodOfPay-

ment, getPayment, shipProduct, insuranceOptionOffered and optionalDiscoun-

tRates.

Figure. 9. Creation and usage of ontology for a model that involves the execution of a

Java function when a transition is fired

The Buyer Ontology consists of the address of the customer, whether the buyer is

a wholesaler or a retailer, the buyers’ preferred mode of payment and the bank

account information. Seller Institution Ontology will have information regarding

various policies such as the refund policy, defective items policy, warranty poli-

cy and insurance policy. Buyer Institution ontology will have information re-

garding the insurance policy governing the purchase of a product. Application

ontology governs the common attributes of application such as categories of sale

items, product information, shopping cart and the tax rate.

Figure 9 shows the XML representation of the function ontology. This function

is invoked during the execution of the process model. The XML ontology is

converted to Java class ontology similar to WSDL2java conversion in the con-

text of Web Services domain. As indicated in the diagram, the definition of the

Java function is represented as a string in the <body> tag embedded in the XML

representation. When a model is designed, the modeler compiles the Java class

that is generated from the XML representation to the Java class format. The

workflow modeler will make use of these compiled classes when function ontol-

ogy has to be called within a transition.

5.1 Handling changes in ontologies

1. One of the advantages of using agents in a workflow system is to dynamically

change the process model during runtime. When a process model changes there

are chances that new terms can be introduced. If there are new terms defined in

the process model, we ask the workflow manager or the user of the workflow

system to add these terms or concepts to the ontologies (assuming that these

terms are added before the execution of the process model).

 2. During the execution of a process model there could be many job instances

running. When the ontology changes, the agents executing these job instances

will be notified of the change. In the current state of the system, the change is

reflected only in those job instances that have started after the changes are com-

mitted.

3. In our workflow system we provide mechanisms for the same process model

to use different ontologies. An example is the buyer-seller scenario in which spe-

cial discounts during festive occasions might be offered. In these cases there

would be changes to the ontologies with regard to how the selling price of a

product is calculated. In our system the agent that executes a process model has

an option to choose one of the ontologies out of the several ontologies that are

relevant such as FestiveSeasonSellerOntology or RegularSellerOntology.

4. When a new agent joins a society, it is accepting (can access) the terms and

concepts defined in the ontology of that society. When there is any change in the

ontology at the societal level (due to a new law) a notification is sent to all the

agents registered in the directory facilitator for that particular society.

6 Conclusions

We have explained how we create, store and use ontologies in our framework.

We have described the four levels of ontologies in our system. We have ex-

plained through the auction scenario example, how these ontologies are used. We

have also described mechanisms for handling changes in the ontologies.

We would like to further investigate the incorporation of changes to the ontolo-

gies by the agents for currently running instances. Our future work will involve

the integration of some of the publicly available domain specific ontologies with

the agent based workflow system. We are also planning to design a mechanism

to incorporate web service ontologies and hence move towards semantic work-

flow agents that can use the web services. In case of conflicts in ontologies used

by different agents, we would like to explore a mechanism to negotiate with oth-

er agents involved in the system before a particular decision is made to update

the current ontology in use.

References

Meilin, S, Guangxin, Y, Yong, X, and Shangguang, W (1998), “Workflow

Management Systems: A Survey.” Proc. IEEE International Conference on

Communication Technology.

Shepherdson, J.W, Thompson, S.G. and Odgers,B. (1998) “Cross Organisation-

al Workflow Coordinated by Software Agents”, in CEUR Workshop Proceedings

No 17. Cross Organisational Workflow Management and Coordination, San

Francisco, USA.

van der Aalst, W.M.P and van Hee, K. (2002), Workflow Management: Models,

Methods, and Systems, MIT Press, 2002.

Nowostawski, M.(2003), “JFern– Java based Petri Net framework”.

Purvis,M.K, Cranefield,S., Nowostawski,M., and Carter, D (2002), “Opal: A

multi-level infrastructure for agent-oriented software development”, The infor-

mation science discussion paper series no 2002/01, Department of Information

Science, University of Otago, Dunedin, New Zealand.

Jensen, K., Coloured Petri Nets - Basic Concepts, Analysis Methods and Practi-

cal Use, Vol. 1: Basic Concepts. EATCS Monographs on Theoretical Computer

Science. 1992, Heidelberg, Berlin: Springer Verlag GmbH. 1-234.

Fleurke,M., Ehrler, L., and Purvis, M. (2003), “JBees - an adaptive and distrib-

uted framework for workflow systems”, Proc. of Workshop on Collaboration

Agents: Autonomous Agents for Collaborative Environments (COLA), Halifax,

Canada, eds, Ali Ghorbani and Stephen Marsh, pp. 69–76.

Savarimuthu, B.T.R., Purvis, M. and Fleurke, M. (2004a). “Monitoring and Con-

trolling of a Multi-agent Based Workflow System.” In Proc. Australasian Work-

shop on Data Mining and Web Intelligence (DMWI2004), Dunedin, New Zea-

land. CRPIT, 32. Purvis, M., Ed. ACS. 127-132.

Savarimuthu, B.T.R and Purvis M.A (2004b), “A Collaborative mulit-agent

based workflow system.” In: M. G. Negoita, R. J. Howlett, L. C. Jain (eds.),

Knowledge-Based Intelligent Information and Engineering Systems, 8th Interna-

tional Conference, KES2004, Wellington, New Zealand, September 2004, Pro-

ceedings, Part II, Springer LNAI 3214, pp. 1187-1193, 2004

Murata, T. (1989) Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4): 541–580, April 1989.

Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P. and Odgers, B. (2000),

Autonomous Agents for Business Process Management. Int. Journal of Applied

Artificial Intelligence, 14(2):145–189, 2000.

Nissen, M.E (2000), “Supply Chain Process and Agent Design for E-

Commerce”. In 33rd Hawaii International Conference on System Sciences.

Stormer, H. (2001), “AWA - A flexible Agent-Workflow System.” In Workshop

on Agent-Based Approaches to B2B at the Fifth International Conference on

Autonomous Agents (AGENTS 2001), Montral, Canada.

Wang, M., and Wang, H.(2002), “Intelligent Agent Supported Flexible Work-

flow Monitoring System”. In Advanced Information Systems Engineering: 14th

International Conference, CaiSE, Toronto, Canada.

Cranefield, S., Pan, J., Purvis, M. (2003), “A UML ontology and derived con-

tent language for a travel booking scenario”. OAS, pp 55-62

Dickinson, I., Wooldridge, M. (2003), “An initial response to the OAS'03 chal-

lenge problem”. OAS, pp 63-70

Scott, R.C., Chen,Y.,Finin,T.W., Labrou,L., Peng,Y. (2000), Using Colored Petri

Nets for Conversation Modeling, Issues in Agent Communication, p.178-192

Purvis, M. K., Huang, P., Purvis, M. A., Cranefield, S. J., and Schievink, M.

(2002), "Interaction Protocols for a Network of Environmental Problem Solv-

ers", Proceedings of the 2002 iEMSs International Meeting: Integrated Assess-

ment and Decision Support (iEMSs 2002), Volume 3, Andrea E. Rizzoli and

Anthony J. Jakeman (eds.), The International Environmental Modelling and

Software Society, Lugano, Switzerland, pp 318-323.

