
Lars Ehrler Æ Martin Fleurke Æ Maryam Purvis

Bastin Tony Roy Savarimuthu

Agent-based workflow management systems
(WfMSs)

JBees: a distributed and adaptive WfMS with monitoring and

controlling capabilities

Published online: 8 November 2005
� Springer-Verlag 2005

Abstract Workflow management systems (WfMSs) based on agent technology
can cope with the rapidly evolving business environment better than
most other systems as they are more flexible and open. In this paper we
describe a possible architecture of such a system by means of our prototype
WfMS called JBees. The combination of collaborating agents and the
Coloured Petri Net (CPN)-formalism in JBees enables a flexible and adaptive
system with the possibility of simulation, analysis, and monitoring of
the process execution in order to identify potential inconsistencies and to
provide appropriate information to the workflow administrator for the
purpose of the process improvement.

Keywords Workflow management system Æ Adaptability Æ Software
agents Æ Workflow monitoring Æ Coloured Petri nets

L. Ehrler Æ M. Fleurke Æ M. Purvis (&) Æ B. T. R. Savarimuthu
Department of Information Science, University of Otago,
PO Box 56, Dunedin, New Zealand
E-mail: tehrany@infoscience.otago.ac.nz

L. Ehrler
Fakultät Informatik, Technische Universität, Dresden, Germany
E-mail: lars@larsehrler.de

M. Fleurke
Department of Computer Science, University of Twente,
Enschede, The Netherlands
E-mail: a.m.fleurke@student.utwente.nl

ISeB (2006) 4: 5–23
DOI 10.1007/s10257-005-0010-9

ORIGINAL ARTICLE



1 Introduction

Workflow management systems (WfMSs) (Meilin et al. 1998; Schael 1998;
van der Aalst and van Hee 2002) are increasingly being used to manage
business processes associated with distributed global enterprises. Some of the
benefits of using a WfMS are:

– Ability to visualize the overall process and interdependencies between
various tasks,

– Automation of the processes, and
– Automated coordination and collaboration between various business
entities.

Existing, commercially available WfMS do not offer sufficient flexibility
for distributed organizations that will be participating in the global market.
These systems have rigid, centralised architectures that do not operate across
multiple platforms (Shepherdson et al. 1998).

Improvements can be made by employing a distributed network of
autonomous software agents that can adapt to changing circumstances.

In the past, WfMSs were used in more well-defined activities, such as
manufacturing, where the processes tend to be more established and stable.
But in the current climate WfMSs may be used for more fluid business
processes, such as e-commerce, or in processes involving human interactions,
such as the software development process. In such situations, at times, it is
not always possible to predict in advance all the parameters that may be
important for the overall processes. In particular some of the reasons for
wanting an adaptive WfMS are as follows (Bandinelli et al. 1993):

– It may not be possible to specify all the process details associated with a
complex process at the outset. The initial model may represent a high-level
view of the process, which includes some of the sub-processes. Gradually
some of these sub-processes may be refined as the stakeholders obtain
more experience and knowledge of a particular process.

– Due to changes in the market, new requirements may be imposed which
can impact the process definition. This change in the market may also
include the availability of some new technologies, which may require the
modification of the process as well.

In this paper, we describe an agent-based framework that provides a
flexible infrastructure for incorporating dynamic changes to the currently
executing process model. This architecture provides a mechanism for
communication of distributed components in order to support inter-
organizational WfMS.

In Sect. 2 we give a short overview of the work which has been done so
far. Section 3 describes the architecture and the functionalities of our
prototype WfMS, followed by an example in Sect. 4. We conclude with the
results of our research and point out the work which should be done in the
future in Sect. 5.

6 L. Ehrler et al.



2 Background

2.1 Coloured Petri nets

Coloured Petri nets (CPNs) are used to model workflow systems, due in part
to their sound mathematical foundations and to the fact that they have been
used extensively for modelling distributed systems with concurrent activities
(Jensen 1992). Coloured Petri nets consist of the following basic elements:

– Tokens, which are typed markers with values—in our implementation the
type can be any Java class.

– Places (circles), which are typed locations that can contain zero or more
tokens.

– Transitions (squares), which represent actions whose occurrence (firing),
can change the number, locations, and value of tokens in one or more of
the places connected to them. Transitions may have guards, which must
evaluate to TRUE in order for a transition to fire. In a workflow model a
transition may represent a task.

– Arcs (arrows) connecting places and transitions. An arc can have associ-
ated inscriptions, which in our implementation are Java expressions whose
evaluation to multisets of token values affects the enablement and firing of
transitions.

Some reasons for preferring Petri net modelling to other notations used
for workflow modelling are given by (van der Aalst 1996):

– They have formal semantics, which make the execution and simulation of
Petri net models unambiguous. It can be shown that Petri nets can be used
to model workflow primitives identified by the Workflow Management
Coalition (WfMC 1995).

– Unlike some event-based process modelling notations, such as dataflow
diagrams, Petri nets can model both states and events.

– There are many analysis techniques associated with Petri nets, which make
it possible to identify dangling’ tasks, deadlocks, and safety issues.

Currently, we are using JFern (Nowostawski 2003)—a CPN simulator
and enactment engine to design and execute the models. We have modified
the JFern editor to support hierarchical models, which enables the modeller
to start with a coarse model of the process and gradually refine each of the
sub-processes into a separate Petri net model.

2.2 Agent systems

Some commonly accepted characteristics of an agent are listed by Bradshaw
(1997): reactivity, autonomy, collaborative behaviour, adaptivity, and
mobility. The most important attribute is probably autonomy. Wooldridge
(1999) (and similarly Shoham 1997) discusses the difference between agents
and objects. They both mention three main distinctions, which are all related
to the autonomy of agents: agents have control over their behaviour, agents

Agent-based workflow management systems (WfMSs) 7



have flexible behaviour (they can behave reactively or proactively), and an
agent often has its own thread(s) of control.

According to Sycara (1998), there are several benefits of using multiagent
systems for building complex software. For example, multiagent systems can
offer a high level of encapsulation and abstraction. Because agents are
independent, every agent can decide by itself, what is the best strategy for
solving its particular problem. The agents can be built by different
developers; as long as they understand the communication, they can work
together. A second important benefit is, that multiagent systems offer dis-
tributed and open platform architecture. Agents can support a dynamically
changing system without the necessity of knowing each part in advance. This
requires, however a matchmaking infrastructure.

Our system is based on the Java-based agent platform Opal (Purvis et al.
2002), developed at the University of Otago since 2000. It meets the
standards of the Foundation for Intelligent Physical Agents (FIPA) for agent
platforms and incorporates a modular approach to agent development
(Nowostawski et al. 2001).

2.3 Former approaches to WfMSs

2.3.1 WfMSs using software agents

In the context of WfMSs, agent technology has been used in different ways
(Joeris 2000). In some cases the agents fulfil particular roles that are required
by different tasks in the workflow. In these cases the existing workflow is
used to structure the coordination of these agents (Jennings et al. 2000;
Nissen 2000). An example of this approach is the work by M. Nissen in
designing a set of agents to perform activities associated with the supply
chain process in the area of e-commerce (Nissen 2000).

In other cases, the agents have been used as part of the infrastructure
associated with the WfMS itself in order to create an agent-enhanced WfMS
(Stormer 2001; Wang and Wang 2002). These agents provide an open system
with loosely coupled components, which provides more flexibility than the
traditional systems.

Some researchers have combined both of these approaches (Chen et al.
2000), where an agent-based WfMS is used in conjunction with specialized
agents that provide appropriate application-related services.

2.3.2 Adaptive WfMS

Adaptive workflows have been discussed for many years and many people
have described what should be done (Chen et al. 2000; van der Aalst 2001).
Only a few have proposed techniques to manage adaptability and only a
small number of actual implementations have been made that tackle some
aspects of adaptability (Purvis et al. 2001). Transferring running work cases
to a new model is still a difficult issue. The work done in the paper (Purvis
et al. 2001) describes a prototype, which provides some adaptability by

8 L. Ehrler et al.



manual transfer of tokens in the new process model. This is indicated in a
comparison of current WfMS that was done by van der Aalst et al. 2002.

The approach in much of the research is to define a limited set of possible
transfers, such as inserting an extra task in sequence, skipping a task, or
replacing a task with a new subnet. In this way the semantics of the workflow
stay well defined. The drawback of this approach is that the set of possible
transfers is very limited and/or the expressive power of the specification
language is too restricted, limiting the possibilities for specifying a process.
For example the approach of van der Aalst et al. (1999) is based on inher-
itance, but it requires that every workflow should be derived according to a
limited set of transitions from some basic workflow definition.

2.3.3 Monitoring and feedback

Monitoring and feedback mechanism of workflow systems have been men-
tioned by researchers for many years. Few researchers have discussed the
issues associated with monitoring and feedback (Cui et al. 1998; Muehlen
and Rosemann 2000). When it comes to agent-based monitoring, there has
been one proposed system (Wang and Wang 2002), but this lacks feedback of
the process model using agents and also does not cater to distributed
monitoring, which is central to any workflow system as described by van der
Aalst et al. (2002).

3 JBees

3.1 The architecture

Our research is focussed on developing an agent-enhanced WfMS, where the
work associated with running a WfMS has been partitioned among various
collaborating agents that are interacting with each other by following
standard agent communication protocols.

JBees is based on Opal (Purvis et al. 2002) and uses the CPN execution
tool JFern (Nowostawski 2003). A first description of JBees can be found in
our previous paper (Fleurke 2003). Our enhanced system consists of seven
Opal agents, which provide the functionality to control the workflow.
Figure 1 shows these seven agents and their collaboration.

3.1.1 Management agent

A management agent (on the left in Fig. 1) provides the user interface for the
human workflow manager. It can:

– Create and delete role definitions and process definitions
– Instantiate a new process instance
– Create resource agents for new resources
– Simulate the execution of a process.

Agent-based workflow management systems (WfMSs) 9



3.1.2 Storage agent

A storage agent (on the bottom in Fig. 1) manages the persistent data, for
instance the definitions of tasks, roles and processes, and the monitored data.
It also notifies all management agents if the data has changed (for example
one management agent adds a definition, and the storage agent notifies all
other management agents that there is a new definition).

3.1.3 Process agent

A process agent (on the top in Fig. 1) is responsible for the execution of one
particular case. For each work case and for each sub work case a new process
agent is created. The CPN model is provided by the management agent or by
the ‘‘parent’’ process agent and the process agent uses JFern to execute this
model.

3.1.4 Resource agent

A resource agent (on the right in Fig. 1) is the user interface for the human
resource or the interface for some tool which can do tasks automatically
(such as printers and scanners). Every resource has its own resource agent.
The agent represents the resource in the system and negotiates the resource
allocation on behalf of the resource and exchanges the necessary information
for the execution of a task.

3.1.5 Resource broker agent

A resource broker (on the right in Fig. 1) is responsible for the resource
management. Every resource agent is registered with at least one of the

Fig. 1 An overview over the JBees architecture

10 L. Ehrler et al.



resource brokers and a process agent requests the resource broker to identify
and allocate a suitable resource. Different strategies for the resource
management can be incorporated just by replacing the agent with a new
agent that employs a new strategy.

3.1.6 Monitor agent

A monitor agent (on the bottom in Fig. 1) gathers the data in the system that
is necessary to analyse workflows, such as execution times and resource
utilization. The monitor agent gathers this data associated with a particular
case and (after the case is finished) sends this data to the storage agent for
persistent storage.

3.1.7 Control agent

A control agent (on the left in Fig. 1) provides the feedback mechanism
required for process re-engineering. The control agent continuously senses
the anomalies or violations of the criteria specified by the manager and sends
warning messages to the manager agent and also logs those messages. The
manager agent or the human manager decides the appropriate corrective
measures that have to be carried out.

3.2 Advantages of using an agent-enhanced WfMS

We outlined in Sect. 2.2 that the use of software agents facilitates the design
of a distributed and open platform because agents are loosely coupled
components forming an open system. New technologies and techniques can
easily be incorporated by introducing new specialized agents into the system.

The use of such an open platform has advantages for building a workflow
management system. Firstly it facilitates cooperation with other organiza-
tions. The essential pieces for interoperability are ontologies and interaction
protocols. If the organizations agree on standard ontologies and protocols,
they can easily cooperate even if they have completely different platforms and
systems. Secondly, the use of software agents gives us the opportunity to have
a flexible system. For example, the resource management strategy can change
dynamically (by just starting an agent with a new strategy), resources can
register or de-register, and process definitions can be changed more easily.

This flexibility provides adequate support in implementing an adaptive
and distributed system. New process models (when they are required) can be
dynamically incorporated into the system (see Sect. 3.5) and each agent can
be located in a separate host on the Internet (see Sect. 3.7).

3.3 Execution of workflows

In order to process a new work case, the management agent creates a new
process agent providing the definition of the process. The process agent
starts the execution of this case by invoking JFern.

Agent-based workflow management systems (WfMSs) 11



The process agent requests all the definitions of the tasks from the storage
agent (the process definition contains only the names of the task—the defi-
nitions themselves are not stored in the CPN model so that they can be easily
reused in different process definitions). Every task definition contains all
roles that can execute this task. These roles are needed to request an
appropriate resource from the resource broker (see Sect. 3.4). The process
agent contacts the resource allocated by the resource broker directly to hand
over the information necessary for executing the task.

3.4 Resource allocation

The workflow is described by a coloured Petri net. Normally, a transition
representing a task is enabled if there is a job token that specifies the context
of the current job (work case instance), and a resource token that indicates
that there is a resource to do the task. The resources are taken from a CPN
model place that holds all resources in the system. To provide more flexibility
the resource required for each transition is not included in the model. Since
the resources are decoupled from the model, they can be easily changed. In
this approach resources have to be explicitly requested when required by a
transition. This process (obtaining the required resources) is represented in
another subnet not shown in the process model to avoid cluttering the net
with the modelling elements that are not central to the model. The request
for a resource contains the roles which can execute the task. The resource
broker sends a request message to the appropriate resource agent which is
capable of performing the task. The resource agent can either decline or
accept the request. If the broker can successfully allocate a resource, it will
return the name of the chosen resource to the process agent.

3.5 Adaptability

As indicated earlier, for each work case a new process agent is created and an
appropriate CPN model is instantiated. The work case is represented by a
token in the CPN model. While the workflow system is running there can be
a need to modify the CPN model (due to a change in the business process). In
this case there are several possible actions that can take place. The choice of
these actions depends on the scope of the change requested and the extent to
which it has to be applied to the existing work cases. In case the change has
to be applied to new work cases, waiting in the queue to be processed, then
we can easily instantiate the process agent with the new or modified model
instead of the old model for these work cases. However, if the proposed
change in the process should be applied to the running instances, it is nec-
essary to make sure that the change does not violate the structural and
semantic consistency of the model before we can transfer the state of the
running instance to the new model. To accomplish this task, we use an
algorithm that calculates the region in which transfers are unsafe (Fleurke
2004). The algorithm is an improved version of van der Aalst’s algorithm
(van der Aalst 2001) to calculate the minimal change region.

12 L. Ehrler et al.



In order to determine whether a transfer of the case is safe or not, the
algorithm identifies the region of the process model that is impacted by the
change. The impacted region is first identified by calculating the difference
between the old and new net. Second, any other net elements that relate to
the affected elements via parallelism are included. Together these elements
form the critical region that is examined in order to determine if the transfer
is safe or not.

If the job token of the running case is outside the corresponding region of
the net, then the state is transferred to the proposed process model.
Otherwise the transfer is not safe and requires a human manager to choose
one of the following exception handling methods:

– Continue processing the instance according to the old definition
– Restart the instance with the new definition
– Delay the change until the job token gets during the workflow execution in
a safe region and then change the process model

– Have the user manually transfer the token

A possible transfer is facilitated by our use of one agent for each work
case. Therefore the work cases are executed independent of each other and a
transfer from one case does not interfere with other work cases.

For more details concerning the algorithm used to identify this region,
refer to the Masters degree thesis by Fleurke (2004).

3.6 Reliability

One significant problem in the design of a distributed system is reliability. In
particular, certain elements that are crucial to the execution of workflows
might be prone to ‘‘central points of failure’’ (for example if they cannot be
accessed or they fail themselves). A WfMS usually has two critical activities:
the management of resources and the management of persistent data. If these
elements are centralized and they fail, the whole system cannot function any
more.

Our architecture based on agent technology provides an easy and flexible
solution for this problem. A resource broker agent is responsible for the
management of resources, but there can be several resource brokers. As you
can see in Fig. 2, every resource agent is registered with at least one of the
broker agents. If a resource broker fails or is not available, there are still
other brokers which might be available and one of them can be contacted.
Possibly a resource that is not ideal will be allocated in this case, however,
the process will still be executed. The management of persistent data is
managed in a similar way.

3.7 Distribution

An organization with offices/departments at different locations would
require distributed workflow models. As shown in Sect. 2.2, the adoption of

Agent-based workflow management systems (WfMSs) 13



agent technology facilitates the support for these distributed workflow
modelling and execution. The mechanism of distribution in JBees has been
carried out in the following ways:

1. The process model can be distributed. A model can be separated into
several sub-processes which can be located on different hosts as they are
executed by several process agents. The sub-processes could span vari-
ous geographical locations. For example a shipping sub-process can be
located in the shipping department while the billing sub-process can be
located in the finance department of an organization—both departments
may be in different cities or even countries.

2. The resource management can be distributed. Even if the process is
executed in one location, resource brokers at several locations can be
asked for a resource. Therefore the execution of a task can be delegated
to a remote resource with possibly specialized skills, even though the
process itself is located at a completely different location.

3. JBees incorporates an agent-based distributed database. A central
database can become a bottleneck or, worse, a central point of failure in
a system. Therefore we incorporated a distributed database, managed by
agents. The system can have several storage agents—each agent with its
own local database (a node of the distributed database) underneath.
Data can be retrieved/stored by all agents through any of the storage
agents. When any of the storage agents senses the change of data, it
synchronizes the distributed database by informing all other storage
agents to update the data.

3.8 Simulation

In the process of creating new process models these models needs to be tested
and evaluated for their efficiency. For this purpose JBees has a special
simulation agent (a dedicated process agent). The human manager can

Fig. 2 Distributed resource management

14 L. Ehrler et al.



choose several parameters such as number of resources, number of cases or
delay between actions, and the agent simulates the execution of the process.
The data collected by the simulation agent can be analysed and also used for
improving the process model.

3.9 Monitoring

Monitoring is an indispensable part of any WfMS. Every case that is
executed in a process model has to be monitored for its various properties
such as time taken to complete the process, the various resources employed,
time taken by the resources to complete the tasks, and waiting times of the
jobs in the queue to be served by a resource. Our initial work on monitoring
can be found in the previously published paper (Savarimuthu et al. 2004).

Our architecture incorporates the modules to examine, analyse, and
display the properties of the workflow system. This data is stored after
simulation (as described in Sect. 3.8) and also after enactment of every case.
Due to the distributed nature of the system we need new strategies for
monitoring the system in enactment mode. The information is distributed
and work cases can have modified process definitions, several sub-work
cases, and several agents associated with the case, which are independently
working. Our approach is to have a dedicated monitor agent collecting all
information. Information which belongs to the same case will be collected
and integrated by this agent. This data can be used to improve the workflow
while executing (such as employing more resources of a role that is in
demand).

In both cases (simulation and enactment), the data is sent to the storage
agent to store this data persistently. The human manager of the WfMS can
choose any of the properties to analyse the state of that property at any
particular point of time. The data obtained from simulation and enactment
can be used for drawing graphs for the purpose of monitoring. We have
integrated the JFreeChart, an open source Java API (Object Refinery Ltd
JFreeChart. http://www.jfree.org) with our framework to draw and display
graphs using the data collected by our system.

3.10 Feedback mechanism

During the enactment and also while simulating various scenarios, the user/
manager of the workflow system specifies certain criteria that have to be
looked into continuously and should be constantly compared with the data
obtained from the simulation or enactment. The user could specify whether
the criteria holds for specific processes or for all processes. The criteria used
in the feedback mechanism are implemented using database queries. The
manager constructs these queries depending on which criteria he/she needs to
monitor and also the frequency at which the control agent should report
violations of these criteria.

When the controlling agent senses anomalies or violations of these criteria
it sends a warning message to the management agent. An example of these

Agent-based workflow management systems (WfMSs) 15



criteria could be the overall completion time for any given case not exceeding
more than a given value or the resource utilization not decreasing below a
certain value. The controlling agent also logs the messages to the warning log
so that the human manager can handle that particular problem if he/she is
not available at that time. The aim of this design is to capture all possible
critical conditions for continuous optimization of the processes.

4 Example

4.1 Simple example

To illustrate the functionality of the system, we chose a simple process of
ordering a book. The process model of this is shown in Fig. 3.

After the customer orders a book, the inventory has to be checked
whether a copy of this book is there and the credit rating of the customer has
to be checked. These checks are done in parallel to speed up the process and
afterwards the results are evaluated. Based on the evaluation it is decided
whether the order can be processed or should be rejected. Assuming that the
processing of the request has been approved, the shipping of the book and
the sending of the bill are done in parallel. Finally the results of shipping and
billing activities are archived so that one can handle possible customer
complaints.

Suppose a new order arrives. The first step of creating a new process agent
and getting all task definitions is shown in Fig. 4.

Fig. 3 The CPN of the example workflow

16 L. Ehrler et al.



The process agent ‘‘process1’’ starts executing the work case by putting a
job token in the place called Start (shown in Fig. 3). This activates the
transition Order Entry.

According to the task definition, a resource of the role processor is
needed. The process agent asks the resource broker for a resource of this
role. The broker will allocate a resource of this type and return the name of
this resource to the process agent. In case it cannot allocate a resource it will
send a message to the process agent that it has failed to allocate a resource.
Then, the process agent has to decide how to handle this scenario (for
instance by asking another resource broker, or waiting a certain time and
asking the same resource broker again).

After the resource executes the task and returns the result of the task, the
JFern engine gets notified that the task Order Entry has been successfully
executed and it continues executing the CPN model. The process of
allocating a resource and executing a task is shown in Fig. 5 and this process
is repeated for every task.

Fig. 4 The sequence diagram for starting a new work case

Fig. 5 The sequence diagram for allocating a resource and executing a task

Agent-based workflow management systems (WfMSs) 17



4.2 Demonstration of adaptability

Suppose the company changes the way an order is dealt with. The process
model in the right of Fig. 6 is the new definition of this workflow. The tasks,
shipping and billing, are now executed in series, which changes the degree of
parallelism.

Our architecture, which assigns one process agent to every work case,
gives the flexibility to handle this change:

– New work cases start with the new definition.
– Running work cases are handled individually. This means every single
process agent decides whether the work case is in a safe region or not. If
the token is in the safe region, the agent changes the definition to the new
process model as shown on the right of Fig. 6. In our example a safe work
case would be for a situation in which the Approval transition has not
been fired (in other words, there should be no token in the dashed region
shown in the diagram on the left of Fig. 6). If Approval has fired, there
appears to be no automated algorithm that can decide how to transfer the
case. In this case, the human manager can decide what to do with unsafe
work cases: either to go on with the old definition or allow manual transfer
of the token by the human manager.

The use of one agent for every work case allows us to easily change a
process only for a specific number of particular work cases. The manager
only has to select the agents that are running these work cases and give them
a new definition.

4.3 Demonstration of distribution

Let us now assume that the company has several branches, for example,
suppose the shipping department is located in Dunedin and the customer

Fig. 6 The old and the new nets showing the unsafe region

18 L. Ehrler et al.



service is located in Auckland. Because of this distributed nature of the
company, it is desirable to have a hierarchical workflow and run the sub-
processes at the local hosts.

The top-level CPN model for this example is shown in Fig. 7. The subnets
are well defined. Now the process agent gets this top- level CPN model and
executes it. Every transition has an attribute that indicates if it is a sub-
process, a task, or a control transition. Depending on the value of this
attribute, the process agent executes the action code of the control transition,
requests a resource for the task or creates a new process agent for the sub-
process. In case of a new sub-process it starts a new process agent (which can
be located at another host if necessary). This process of the distributed
workflow hierarchy can be arbitrarily extended. Note that there is no single
Petri net that controls the entire process. There is one agent that controls the
top-level process, but the agents for the sub-processes work independently.
The results of the sub-processes are integrated accordingly with the top-level
process. Sub-processes are only created when they have to be executed, so
they automatically have the latest versions of the sub-process definition.

4.4 Monitoring

In simulation enactment mode, the various tasks of the process model were
associated with a set of values for the process parameters. These parameters

Fig. 7 The overall process of the distributed workflow

Agent-based workflow management systems (WfMSs) 19



include the number of resources, their availability, and their ability
(time taken) to do these tasks to simulate various ‘‘real life’’ scenarios. By
varying these process parameters, various test scenarios can be examined.
The storage agent stores the results of the simulated cases.

In execution mode, every time an action is started or finished, the process
agent sends a message with the exact time of these events to the monitor agent.
This is also done by the resource broker in the event of resource registration or
deregistration. The monitor agent collects these data. After it gets the noti-
fication message from the process agent that the work case is finished, it
combines the data and sends it to the storage agent for persistent storage.

Figure 8 shows the overall utilization of the resources and Fig. 9 shows
the waiting time for various tasks in similar cases.

4.5 The feedback mechanism

The human manager specifies the various criteria that are to be monitored
continuously for violations. For example, the criteria could be ‘‘the
completion time for a case of process X should not exceed twice the average
of completion times of all cases of the same process (process X)’’. The
controlling agent looks for anomalies to these criteria and reports them to
the manager agent. The manager agent might then decide to initiate the
appropriate feedback action or display the warning so that the human
manager can take appropriate action. This feedback mechanism helps in
continuous process improvement.

5 Conclusion

In this paper we have described the architecture of a prototype agent-based
workflow management system JBees. The use of coloured Petri nets as
process formalism and of collaborating software agents as the basis of the
systems provides more flexibility than existing WfMSs. JBees provides a high

Fig. 8 The percentage utilization of the resources

20 L. Ehrler et al.



degree of distribution and can deal with various levels of adaptability. We
implemented the described architecture and this paper showed solutions for
the problems arising while implementing this system. Our existing frame-
work has been endowed with monitoring and feedback mechanisms, so that
the various processes and cases can be studied, analysed, and the required
feedback can be given to the workflow manager.

As part of our future work we intend to integrate into the currently
implemented framework one of the existing CPN tools that supports formal
analysis so that we can examine the model for certain properties such as
reachability. This information as well as the monitoring information can be
used to improve the processes in order to optimize the effectiveness of the
system.

Another part of our future work will be the integration of sophisticated
resource management. One step would be to store all tasks that have been
performed by a particular resource (a task history) to allow more efficient
resource scheduling. There are lots of resource management strategies
already developed which we could as well apply to our system. The
prototype described is available under the GNU Lesser General Public
License (Free Software Foundation 2000) on the internet (Department of
Information Science 2004).

Acknowledgements The authors wish to thank Mariusz Nowostawski for his help in
implementing the system and improving JFern, and Prof. Martin Purvis for supporting
this work. This work has been supported by the Otago Research Grant ORG-0103-
0304. Lars Ehrler thanks the Evangelisches Studienwerk Villigst e.V., Schwerte,
Germany, for their financial support.

References

van der Aalst WMP (1996) Three good reasons for using a Petri-net-based Workflow
Management System. In: Navathe S, Wakayama T (eds) Proceedings of the interna-
tional working conference on information and process integration in enterprises (IPIC
1996), Cambridge, pp 179–201

Fig. 9 The waiting time for various tasks in similar cases

Agent-based workflow management systems (WfMSs) 21



van der Aalst WMP (2001) Exterminating the dynamic change bug: a concrete approach
to support workflow change. Inf Syst Front 3(3):297–317

van der Aalst WMP, van Hee K (2002) Workflow management: models, methods, and
systems. MIT Press, Cambridge

van der Aalst WMP, Basten T, Verbeek HMW, Verkoulen PAC, Voorhoeve M (1999)
Adaptive workflow: an approach based on inheritance. In: Ibrahim LM, Drabble B
(eds) IJCAI 1999 Workshop on intelligent workflow and process management: the new
frontier for AI in business, pp 36–45

van der Aalst WMP, Hofstede AHM, Kiepuszewski B, Barros AP (2002) Workflow
patterns. Technical report, Queensland University of Technology http://tmitwww.tm.
tue.nl/research/patterns/

Bandinelli S, Fuggetta A, Ghezzi C (1993) Process model evolution in the spade
environment, Technical Report No. 14, ESPRIT-III Project GOODSTEP (6115). IEEE
transactions on software engineering, 19(12):1128–1144

Bradshaw J (1997) An introduction to software agents. In: Bradshaw J (ed) Software
agents. MIT Press, Cambridge, pp 3–46

Chen Q, Hsu M, Dayal U, Griss ML (2000) Multiagent cooperation, dynamic workflow
and XML for ecommerce automation. In: 4th international conference on autonomous
agents, Barcelona, Spain

Cui B, Odgers Z, Schroeder M (1998) An in-service agent monitoring and analysis system.
In: 11th IEEE international conference on tools with artificial intelligence, Chicago,
USA, pp 237–244

Department of Information Science, University of Otago. JBees. http://jbees.
sourceforge.net (2004)

Fleurke M (2004) JBees, an adaptive workflow management system—an approach based on
petri nets and 10 Lars Ehrler et al. agents. Master’s Thesis, Department of Computer
Science, University of Twente

Fleurke M, Ehrler L, Purvis M (2003) JBees—an adaptive and distributed framework for
workflow systems. In: Ali Ghorbani, Stephen Marsh (eds) Workshop on collaboration
agents: autonomous agents for collaborative environments (COLA). Halifax, Canada,
pp 69–76 http://www.cs.unb.ca/�ghorbani/cola/proceedings/NRC-46519.pdf, 2003.
National Research Council Canada, Institute for Information Technology

Free Software Foundation (2000) GNU Lesser General Public License
Jensen K (1992) Coloured Petri nets—basic concepts, analysis methods and practical use,

vol 1. Basic concepts. EATCS monographs on theoretical computer science. Springer,
Berlin Heidelberg New York

Jennings NR, Faratin P, Norman TJ, O’Brien P, Odgers B (2000) Autonomous agents for
business process management. Int J Appl Artif Intell 14(2):145–189

Joeris G (2000) Decentralized and flexible workflow enactment based on task coordination
agents. In: 2nd international bi-conference workshop on agent-oriented information
systems (AOIS 2000 @ CAiSE*00), Stockholm, Sweden, iCue Publishing, Berlin,
pp 41–62

Meilin S, Guangxin Y, Yong, Shangguang W (1998) Workflow management systems: a
survey in proceedings of IEEE international conference on communication technology,
scw.cs.tsinghua.edu.cn/cscwpapers/ygxin/WfMSSurvey.pdf

Muehlen MZ, Rosemann M (2000) Workflow-based process monitoring and control-
ling—technical and organizational issues. In: 33rd Hawaii international conference on
system sciences, Maui, HI, USA

Nissen ME (2000) Supply chain process and agent design for E-commerce. In: 33rd Hawaii
international conference on system sciences

Nowostawski M, Bush G, Purvis MK, Cranefield S (2001) A multilevel approach and
infrastructure for agent-oriented software development. In: International workshop on
infrastructure for agents, MAS and Scalable MAS, http://www.umcs.maine.edu/
�wagner/workshop/01 nowostawski bush purvis et al.pdf, 2001

Nowostawski M (2003) JFern—Java-based Petri net framework
Purvis M, Purvis M, Lemalu S (2001) A framework for distributed workflow systems. In:

34th Annual Hawaii international conference on system sciences (HICSS-34)
Purvis MK, Cranefield S, Nowostawski M, Carter D (2002) Opal: a multi-level

infrastructure for agent-oriented software development. The information science

22 L. Ehrler et al.



discussion paper series no 2002/01, Department of Information Science, University of
Otago, Dunedin

Savarimuthu BTR, Purvis M, Fleurke M (2004) Monitoring and controlling of a workflow
management system. In: Proceedings Australasian Workshop on Data Mining and Web
Intelligence (DMWI2004)

Schael T (1998) Workflow management systems for process organisations. Lecture notes in
computer science, vol 1096. Springer, Berlin Heidelberg New York

Shepherdson JW, Thompson SG, Odgers B (1998) Cross organisational workflow coordi-
nated by software agents. In: CEUR workshop proceedings No 17 cross-organisational
workflow management and coordination, San Francisco, USA

Shoham Y (1997) An overview of agent-oriented programming. In: Bradshaw J (ed)
Software agents. MIT Press, Cambridge, pp 271–290

Stormer H (2001) AWA—a flexible agent-workflow system. In: Workshop on agent-based
approaches to B2B at the 5th international conference on autonomous agents
(AGENTS 2001), Montreal, Canada

Sycara KP (1998) Multiagent systems. AI magazine 19(2):79–92
The workflow management coalition (1995)The workflow reference model
Wang M, Wang H (2002) Intelligent agent supported flexible workflow monitoring system.

In: Advanced information systems engineering: 14th international conference, CAiSE
2002, Toronto, Canada

Wooldridge MJ (1999) Intelligent agents. In: Weiss G (ed) Multiagent systems. MIT Press,
Cambridge, pp 27–77

Agent-based workflow management systems (WfMSs) 23


	Outline placeholder
	ssec1:Introduction
	ssec2:Background
	ssec3:Coloured Petri nets
	ssec4:Agent systems
	ssec5:Former approaches to WfMSs
	ssec6:WfMSs using software agents
	ssec7:Adaptive WfMS
	ssec8:Monitoring and feedback
	ssec9:JBees
	ssec10:The architecture
	ssec11:Management agent
	ssec12:Storage agent
	ssec13:Process agent
	ssec14:Resource agent
	ssec15:Resource broker agent















	Fig1
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	ssec16:Monitor agent
	ssec17:Control agent
	ssec18:Advantages of using an agent-enhanced WfMS
	ssec19:Execution of workflows
	ssec20:Resource allocation
	ssec21:Adaptability
	ssec22:Reliability
	ssec23:Distribution
	ssec24:Simulation
























	Fig2
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	ssec25:Monitoring
	ssec26:Feedback mechanism
	ssec27:Example
	ssec28:Simple example




























	Fig3
	Fig4
	Fig5
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	ssec29:Demonstration of adaptability
	ssec30:Demonstration of distribution






























	Fig6
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	ssec31:Monitoring































	Fig7
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	Outline placeholder
	ssec32:The feedback mechanism
	ssec33:Conclusion

































	Fig8
	CR7

	Fig9
	CR23
	CR3
	CR26
	CR25
	CR5
	CR10
	CR22
	CR27
	CR34
	CR30
	CR29
	CR33
	CR6
	CR18
	CR17
	CR1
	CR28
	CR19
	CR16
	CR9
	CR24
	CR14
	CR31
	CR2
	CR4
	CR12
	CR20
	CR13
	CR8
	CR21
	CR11


