
Facilitating Collaboration in a Distributed
Software Development Environment Using P2P

Architecture

Maryam Purvis, Martin Purvis, and Bastin Tony Roy Savarimuthu

Department of Information Science, University of Otago
P O Box 56, Dunedin, New Zealand

{tehrany,mpurvis,tonyr}@infoscience.otago.ac.nz

Abstract. This paper describes efforts to facilitate collaborative work
in a distributed environment by providing infrastructure that facilitates
the understanding of inter-connected processes involved and how they
interact. In this work we describe how our agent-based framework sup-
ports these. This distributed work environment makes use of both P2P
and client-server architectures. Using an example of developing an open
source software system, we explain how a collaborative work environ-
ment can be achieved. In particular, we address how the support for
coordination, collaboration and communication are provided using our
framework.

1 Introduction

Distributed software teams are becoming more common in today’s software
projects, because the teams are based on skill pools that are available in the
global community rather than being constrained with local resources. Distributed
software development [1,2] involves collaboration of people from distributed ge-
ographical locations. This presents challenges in day-today activities in areas,
such as co-ordination, collaboration and communication [2,3]. Co-ordination and
collaboration can be facilitated by the provision of flexible communication mech-
anisms. In the context of collaborative work, an important factor that impacts
the success of the final outcome is how effectively any issues associated with the
shared objective are communicated and resolved. Such communication can be
direct, such as face-to-face interactions, telephone conversations, interactions by
means of chat tools, email, etc; or they can be indirect through common artifacts
associated with the final outcome. In the context of developing an open source
software system, the artifacts associated with the final product comprise doc-
uments, process models, source code etc. A mechanism is needed that ensures
these constantly evolving artifacts are easily accessible to the collaborating part-
ners. So there is a need for a system that provides infrastructural support for
the smooth functioning of a collaborative work environment.

S. Joseph et al. (Eds.): AP2PC 2006, LNAI 4461, pp. 167–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 M. Purvis, M. Purvis, and B.T.R. Savarimuthu

We will assume that in a context of an open source software development,
a distributed team working on a particular project is composed of a few sub-
systems. For example in the development of an operating system, the sub-systems
can be developing the kernel, I/O and file system, mail system, networking, a
set of tools etc. A number of interested people work towards the development of
each sub-system. In this environment the following elements can be useful:

– A model that represents the functional and behavioral aspects of the project
– A model that represents the sub-system level activities
– A model of the communication protocol (Interaction Protocol) between var-

ious collaborators

In this paper we describe how these capabilities are incorporated into the
collaborative work environment. Using various scenarios we also explain how
these features are utilized. To achieve a collaborative work environment and
provide communication mechanism between interacting collaborators we use the
agent based system OPAL [4]. Using this system we can model each collaborator
as a software agent. The Coloured Petri Net [5] formalism is used to model the
activities of the collaborators as well as the communication protocols. These
models are presented in more detail in Section 3.2.

2 Background

To develop the infrastructure needed for collaborative work environments we
have used Coloured Petri nets to represent process models and software agents
as the building block for providing P2P support. We use Coloured Petri nets
(CPN) as a formalism to model workflows in our system. The mathematical
foundation behind the Coloured Petri nets makes it a useful tool for modeling
distributed systems. A detailed description of CPNs can be found in [5].

We have used software agents to build our system. Some of the commonly
accepted characteristics of an ”agent” (listed by Bradshaw [6]) are reactivity,
collaborative behaviour, communication ability, adaptivity and mobility. An im-
portant benefit is that multiagent systems facilitate distributed and open archi-
tecture. Such a system can be adaptable and is robust under conditions of local
failures and changing environmental conditions.

The next section describes an open source software development scenario and
explains how the P2P architecture is used.

3 Collaborative Work in Open Source Software
Development

3.1 An Overview of Collaborative Work

In this section we describe the collaborative work associated with an open source
software development environment. Figure 1 shows how several collaborators re-
siding in one location (e.g Dunedin), can communicate with other collaborators

Agents and P2P Computing 169

in another location (e.g Wellington). Collaborators A, B, C, and D may be in-
volved in the development of one sub-system (such as a kernel sub-system), while
collaborators B and E are working on another sub-system (such as a networking
sub-system). For each of these sub-systems there exists a server to which the
sub-system members may commit their internally developed local artifacts. The
sub-system servers periodically update their stable releases to the project server.

Fig. 1. An agent based collaborative software development environment

There are both inter-group and intra-group communications in the collabora-
tive work environment. However, the inter-group communications may be more
frequent, due to a possibly higher level of dependencies between the various
components involved. Due to frequent changes in modules during development
and the need to integrate the related modules, it is possible that members of a
group will access a particular module even when it is not quite suitable for final
release. For example, one member may want to obtain the API of a module,
or the supporting document such as the specification, associated test cases and
so on. In these circumstances the members can obtain a pre-release module for
preliminary testing from the module developer directly using P2P communica-
tion. The members can thus publish pre-release modules that can be accessed
by another module for integration and testing purpose. If there are any conflicts

170 M. Purvis, M. Purvis, and B.T.R. Savarimuthu

in terms of the expected interface and the current interface, it can be sent as a
comment or feedback to the developer of that particular module.

On comparing with the work done by other researchers [1,2,3], our approach
provides a formal and uniform way of communication mechanism between the
peers by using Interaction Protocols. In addition, the collaborative agent has a
built-in knowledge of the system interfaces and dependencies. This knowledge
can be used in informing the collaborators to take certain actions when required
in the context of software development (explained in scenario 5).

The functionalities provided by each agent are indicated inside the callout
box at the top of Figure 1. The agents can perform various software engineering
activities such as displaying process models, showing API and source code, down-
loading source code and test cases. The agents can then provide notifications on
updates and feedback on the artifacts developed.

3.2 Scenario Description

In the following scenarios we demonstrate how coordination is achieved by inter-
connecting the overall process models with the sub-system process model in
scenario 1. Similarly in scenario 2, we describe how agent interaction protocol
and the model associated with each of the transitions are linked.

Group collaboration is described in scenarios 3, 4 and 5 where the participat-
ing agents can make the project artifacts available to each other and make certain
requests. Coordination and collaboration are realized through agent-based peer
to peer mechanism provided by our agent-based framework.

Scenario 1: Sharing a common understanding of the overall process
model of the project. All collaborative partners should share a common
understanding of the project that they are working on. To facilitate this common
understanding we use Coloured Petri nets to represent the overall structure and
behaviour of the project. The project moderator develops the process model
(through discussion with related resources).

The project manager sends an XML-based process model via agent based
communication modes to all the participants. The participant agents can then
display the process model. The collaborators can modify the process models and
send the result to the moderator agent. The moderator agent collates various
process models and sends the models again to all the participants for choosing
the suitable process model (perhaps by consensus).

For example the model shown in Figure 2 describes the overall project struc-
ture and the dependencies between various components. This model shows that
the project is partitioned into three sub-systems, s1, s2 and s3. It can be ob-
served that s1 and s2 can be performed concurrently. The diagram also shows
that s3 depends on s1 and s2. Each sub-system in turn is represented using a
CPN model which results in a hierarchy of process models that describe the
overall model of the system.

Scenario 2: The process associated with the communication between
agents. The generic process model describing how agents communicate with

Agents and P2P Computing 171

Fig. 2. Model associated with message handling (communication) in each agent

each other is given in Figure 3. Note that the interaction between collaborat-
ing members of the software development team are represented in the model
by interactions between software agents, representing those team members. Each
model can be executed by a collaborator agent [7] which makes use of
JFern [8], a Petri net engine. The collaborator agent performs the following
operations:

– Receive and parse the requests coming from other collaborator agents
– Send results to other collaborator agents

There exists a message dispatcher in the agent based framework that dis-
patches messages that reach the ”out” node shown in Figure 3. All messages
coming to a particular agent will be accumulated in the ”in” node of that agent
and out-going message will be placed in the ”out” node of that agent [9].

When an agent recognizes a message in its ”in” node, it evaluates which tran-
sition should be invoked based on information received. Each of these top-level
transitions may be considered as an abstraction for a more detailed sub-model
Petri net that represents a refinement of the top-level abstraction. For example
the processRequest transition expands to a sub-model where the decision regard-
ing which type of request is handled (such as show API or download source code
activity) can be invoked. Once the activity is performed, the control is returned
to the parent process model’s transition.

Scenario 3: Group configuration. In our agent based framework, for each
project, a moderator agent is created. Our framework uses OPAL’s JXTA imple-
mentation [10] to facilitate peer to peer communication which allows for agent
discovery, joining and leaving. Collaborator agents can join a given project by
searching the projects listed in the directory service of the system. In doing
so, the collaborator agents interact with the moderator (such as finding details
about the overall process model). Similarly, a sub-system can be formed when
one of the collaborator agents itself, chooses to become a moderator. The newly
joining agents can then decide to join this specific group to implement a partic-
ular sub-system. It is also possible that one collaborator agent can be a part of
two sub-systems.

172 M. Purvis, M. Purvis, and B.T.R. Savarimuthu

Fig. 3. Model associated with message handling (communication) in each agent

When changes are made to the artifacts produced by each sub-system, its
members are notified. Also, the changes will be published to other sub-system
members that have subscribed to receive these changes.

Scenario 4: Making artifacts available to the collaborators. Develop-
ment team members working on each sub-system can publish their requirement
specifications, API’s, source code, test cases, test results etc. using a Web Ser-
vice. The collaborator agents are notified of any changes made to these services.
When need arises an agent can connect to a Web Service and retrieve required
information. For example agent A, who is interested in updates from agent B
and C, receives the notification of updates from B and C. When needed, agent
A can make use of that information.

Scenario 5: Details associated with accomplishing different types of
requests. Recall that Figure 1 shows that each collaborator agent can perform
various services such as display process model, show API, download source code,
run test cases etc. Here we describe how a collaborator agent can run test cases in
a distributed environment. Assume that there are three agents belonging to three
different sub-groups. Assume that agent A has to test the modules developed
by B and C (as A’s module interfaces both B and C). Agent A has the basic
knowledge of their dependencies and can only test when both B and C have
notified that their code is ready to be tested. When both the notifications are
received, Agent A requests and receives the API documentation from both B
and C. Agent A tests the modules developed by B and C which are exposed as
Web Services and sends the results (bug report) to B and C. B and C can resolve
the issues raised by A. Here we are assuming that B and C have not made any
changes to their interfaces. If B has changed the interface for the module that is
being developed, then A should modify the test cases and B should incorporate
the changes in the Web Service that is exposed for A to test.

Agents and P2P Computing 173

3.3 Infrastructural Components

In our framework the communication between agents takes place by using the
infrastructure provided by the OPAL framework. Each collaborative worker in
our system is represented by an agent. Each of these agents is made up of micro-
agents [7]. Each micro-agent can perform certain roles. These roles could be
displaying the user interface (UI micro-agent), providing communication (com-
munications micro-agent) and process information (process micro-agent). The
agents send each other messages, the contents of which are usually text-based.
In our system we also use agents to execute process models.

This approach is open and scalable, since new participants may easily join the
collaboration environment by registering themselves with the project moderator.
The newly joined participants can interact with other team members as long as
they use the agent-based infrastructure.

4 Conclusions and Future Work

In this paper we have described how an agent-based system can be used to facil-
itate a collaborative P2P work environment. Using different scenarios, we have
demonstrated how agents can be used to coordinate, collaborate, and communi-
cate with each other in the context of a distributed software development envi-
ronment, such as an open source project. This paper reports work in progress.
We acknowledge that not all possible scenarios in distributed work environment
have been accommodated. In the future we plan to port the system, so that it
can make use of PDAs while keeping in mind the limited capabilities of smaller
devices [10].

References

1. Gutwin, C., Penner, R., Schneider, K.: Group awareness in distributed software de-
velopment. In: CSCW 2004: Proceedings of the 2004 ACM conference on Computer
supported cooperative work, pp. 72–81. ACM Press, New York (2004)

2. Froehlich, J., Dourish, P.: Unifying artifacts and activities in a visual tool for
distributed software development teams. In: ICSE, pp. 387–396 (2004)

3. Guck, R.: Managing Distributed Software Development (2006),
http://www.stickyminds.com/

4. Purvis, M.K., Cranefield, S., Nowostawski, M., Carter, D.: Opal: A Multi-Level In-
frastructure for Agent-Oriented Software Development. In: The information science
discussion paper series no 2002/01, Department of Information Science, University
of Otago, Dunedin, New Zealand (2002)

5. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use, Volume 1: Basic Concepts. In: EATCS Monographs on Theoretical Computer
Science, Springer, Heidelberg (1992)

6. Bradshaw, J.: An Introduction to Software Agents. In: Bradshaw, J. (ed.) Software
Agents, pp. 3–46. MIT Press, Cambridge (1997)

174 M. Purvis, M. Purvis, and B.T.R. Savarimuthu

7. Nowostawski, Mariusz Purvis, M.K., Cranefield, S.: KEA - Multi-level Agent In-
frastructure. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS
(LNAI), vol. 2296, pp. 355–362. Springer, Heidelberg (2002)

8. Nowostawski, M.: JFern - Java-based Petri Net framework (2003),
http://sourceforge.net/projects/jfern/

9. Purvis, M., Purvis, M., Haidar, A., Savarimuthu, B.T.R.: A distributed work-
flow system with autonomous components. In: Barley, M.W., Kasabov, N. (eds.)
PRIMA 2004. LNCS (LNAI), vol. 3371, pp. 193–205. Springer, Heidelberg (2005)

10. Purvis, M., Garside, N., Cranefield, S., Nowostawski, M., Oliveira, M.: Multi-agent
System Technology for P2P Applications on Small Portable Devices. In: Moro, G.,
Bergamaschi, S., Aberer, K. (eds.) AP2PC 2004. LNCS (LNAI), vol. 3601, Springer,
Heidelberg (2005)

	Facilitating Collaboration in a Distributed Software Development Environment Using P2P Architecture
	Introduction
	Background
	Collaborative Work in Open Source Software Development
	An Overview of Collaborative Work
	Scenario Description
	Infrastructural Components

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

