
Integrating Web Services with Agent Based
Workflow Management System (WfMS)

Bastin Tony Roy Savarimuthu, Maryam Purvis, Martin Purvis and Stephen Cranefield
Department of Information Science, University of Otago, Dunedin, New Zealand

{tonyr,tehrany,mpurvis,scranefield}@infoscience.otago.ac.nz}

Abstract

Rapid changes in the business environment call for
more flexible and adaptive workflow systems.
Researchers have proposed that Workflow Management
Systems (WfMSs) comprising multiple agents can provide
these capabilities. We have developed a multi-agent
based workflow system, JBees, which supports distributed
process models and the adaptability of executing
processes. Modern workflow systems should also have the
flexibility to integrate available web services as they are
updated. In this paper we discuss how our agent-based
architecture can be used to bind and access web services
in the context of executing a workflow process model. We
use an example from the diamond processing industry to
show how our agent architecture can be used to integrate
web services with WfMSs.

1. Introduction

Workflow management systems (WfMSs) [7, 9] are
widely used to manage business processes due to their
known benefits such as automation, coordination and
collaboration between entities. Still, the existing,
commercially available workflow management systems
do not offer sufficient flexibility for distributed
organizations participating in the global market. Existing
systems have rigid, centralized architectures that do not
operate across multiple platforms. Improvements can be
made to a WfMS by employing a distributed network of
autonomous software agents that can adapt to changing
circumstances. In particular some of the reasons for
wanting an adaptive WfMS are:
• It may not be possible to specify all the process details
associated with a complex process at the outset. The
initial model may represent a high-level view of the
process, which includes some of the sub processes.
Gradually some of these sub processes may be refined as
the stakeholders obtain more experience and knowledge
of a particular process.
• Due to changes in the market or regulatory environment,
new requirements may be imposed which can impact the
process definition. Changes in the market may also
include the availability of some new technologies and

new services such as web services, which may require the
modification of the process.

The work of Fleurke et al. [4] deals with the
framework of a distributed network of autonomous
software agents that can adapt to the changing
circumstances in a workflow management system. The
business processes undergo changes over time to
accommodate a changing environment such as the
availability of web services. Business processes should be
able to take advantage of web services that are available
in an intranet as well as in the Internet, such as stock
monitoring web services. The workflow system that
models these business processes should have necessary
mechanisms to integrate and use these web services. In
this paper we describe the extension to the work done by
Fleurke et al [4]. The enhanced framework provides
mechanisms to create agents that are capable of accessing
various web services.

The paper is organized as follows. The next section
gives an overview of the background. The architecture of
the system is described in Section 3. In the fourth section
we discuss the underlying mechanism of integrating web
services with our workflow system based on multiple
agents. We present the conclusions and future directions
of our work in section five.

2. Background

In this section we explain the background of our work,
which includes the Coloured Petri nets that are used to
design the process models, the multi-agent system on
which our workflow system has been built, and some
prior approaches in using web services with agents.

2.1. Coloured Petri Nets (CPNs)

We use CPN as a formalism to model workflows in
our system. The sound mathematical foundation behind
the Coloured Petri nets (CPNs) makes it a very useful tool
for modeling distributed systems. Petri nets consist of
four basic elements. The tokens which are typed markers
with values, the places that are typed locations that can
contain zero or more tokens, the transitions which

represent actions whose occurrence can change the
number, locations and value of tokens in one or more of
the places connected to them and the arcs that connect
places and transitions. A detailed description of CPNs can
be found in [6].

2.2 WfMS driven by agents

Multi agent systems offer distributed and open
platform architecture and hence can support dynamically
changing systems. Our WfMS is partitioned among
various interacting agents following the interaction
protocols. The model associated with a business process
is represented with Coloured Petri net formalism that is
executed by a specially designed agent. This agent-based
environment facilitates the dynamic incorporation of
changed models in the system and thereby assists process
re-engineering. Advantages of employing agents include
the facilitation of inter and intra organizational co-
operation and flexibility in process determination and
resource utilization.

2.2. Web Services

Web Services are software components available on
the Internet, which provide certain services that may be of
general interest, such as weather monitoring services,
currency converters, etc. A large fraction of the web
services are used within companies protected within their
own firewalls. These web services can be accessed for
day-to-day business transactions. Examples of these web
services include banking services and air ticket booking.
The workflow process modeler can integrate web services
with the existing workflow system. For example, a
process model associated with the travel plan of a tourist
may depend upon environmental factors, such as the
weather conditions. The task associated with finding the
weather condition can be provided using a web service.

2.3. Related Work

Some researchers have integrated agent-based
workflow systems with web services [3]. However
enhancements can be made to improve these approaches.
In the research done by Buhler et al. [3], BPEL4WS [1]
has been used as a process model and this model is
converted to a Petri net. The problem with this approach
as acknowledged by the authors, is that the demonstration
system developed by the researchers so far does not
support some of the simple constructs of BPEL4WS.
However, in our system the process model is described
using a coloured Petri net that can be directly executed.
Our system does not require the conversion of a BPEL
process into a Petri net process. The conversion

mechanism of a BPEL4WS model to a Petri net model
has to be validated to ensure the structural and
behavioural equivalence associated with the original
model.

3. System Architecture

Our system is based on the FIPA [2] compliant agent
platform, Opal and uses the CPN execution tool JFern [8].
Our system consists of seven types of special Opal agents,
which provide the functionality to control the workflow.
The manager agent provides all functionality the
workflow manager needs, such as creation and deletion of
tasks, roles and process definitions, instantiation of new
process instances, and creation of resource agents. The
process agent executes a process instance. Each resource
in the system has its own resource agent. Every resource
in the system gets registered to one of the broker agents
that allocate resources to the process. The storage agent
manages the persistent data that is needed. The monitor
agent collects all the process-specific data and sends them
to the storage agent. The control agent continuously looks
for anomalies to the criteria specified by the human
manager and reports the violations of these criteria to the
manager agent. The manager agent provides information
to the human manager, which can be used as a feedback
mechanism. A detailed description of these agents can be
found in our previous work [5].

4. Integrating web services

In our design we have wrapped the web service as an
agent. A specialized agent called Web Service Agent
(WSA) is created, and it can be used to query various
operations exposed by the web service.

4.1 Demonstration of agent-based integration of
web services using an example from diamond
processing industry

In this section we describe how a web service has been
integrated with the multi-agent based workflow
management system. The Petri net model shown in figure
1 illustrates how agents can be used in a diamond
processing industry. When the process agent executes the
Petri net model, a token representing a job is created at
the Start node. The attributes encoded in the job token in
the form of name-value pairs are:

• Attribute 1: (URIName,
http://www.stardiamonds.com/diamonds.wsdl)
• Attribute 2: (connectAndQueryWebService,
getAllStoneDetails)
• Attribute 3: (determinePrice, getPrice)

The process agent assigns to the resource agent the
task of creating a web service agent as inscribed in
createWebServiceAgent task definition. The resource
agent accesses the URI from the job token and reads the
WSDL [10] document and uses wsdl2java from the Axis
toolkit [11] to create the necessary stubs.

The resource agent sends a message to the process
agent about the creation of the Web Service Agent, which
is capable of handling requests for operations defined in
WSDL. Once the process agent receives a message from

the resource agent that a web service agent has been
successfully created, the process agent executes the next
transition connectAndQueryWebService. The operation
that is to be invoked is encoded in the job token that is
passed along when a transition has been fired
successfully. The process agent assigns this task to the
web service agent by sending the message to the web
service agent with the details about the operation that is to
be invoked. The web service agent invokes the web
service, obtains the result, and sends back the result to the
process agent as a message. The results are stored in the
job token.

Fig.1 A snapshot of the diamond processing process model during execution

The result consists of an array comprising of details of the
diamonds. For each diamond in the array, a job token is
created. A diamond job token would contain details such
as clarity, color, cut, carat weight, lusture, nextProcess,

nextArtisan, hasProcessingFinished, price and name-
value pairs of the web service operations that are to be
invoked. The name represents the transition that is
executed and the value represents the operation that is

called on the web service. These job tokens are available
for the assorter agent1 who decides if the diamond has
been processed. The process agent directs the assorter
agent to decide whether each of the diamonds requires
further processing. If a diamond requires further
processing, the assorter agent determines which process
the diamond should undergo and then allocates the
appropriate artisan agent to perform that task. If the
assorter agent decides that the diamond has been
processed completely, it updates the details of the
diamond token that can be sent to the evaluator. This is
done be setting a value for the boolean attribute
hasProcessingFinished for that particular token to
indicate whether the diamond has been processed. The
web service agent, which acts as a evaluator determines
the price of the token depending upon the 4 c’s of
diamond quality, namely color, clarity, cut, carat weight,
and assigns a price for that diamond. Each artisan agent is
capable of performing one or more tasks. These tasks are
lasterCut, windowing, acidBoil, manualCut and
polishing. Each unprocessed diamond is assigned to one
of these tasks by the assorter agent. Depending upon the
attribute of the job token, these diamonds will be
available to a particular artisan agent. The artisan agent
performs a particular task on the diamond. After the
completion of a task, the artisan agent requests the
process agent to add a name-value pair to the attribute list
of the job token to indicate the completion of the task. For
example, after the completion of a task named laserCut,
an attribute binding such as (laserCut, true) is added to
the job token.

After a stone has been processed into a diamond that
can be sold, it is evaluated and the diamond is made
available at the end place for further operations such as
dispatchToHeadOffice. If the processing of the diamond
is not complete, the stone details can be obtained from the
diamond processing web service. The diamond goes
through an iteration of several processes before it is ready
for the market. After every task is executed, the storage
agent persistently stores all the details of a diamond.
Figure 5 also shows the pool of resource agents and the
process model that is executed. The dotted arrows start
from an agent and end in a transition of the CPN. This
indicates that the agent is able to perform the task
indicated by the transition.

5. Conclusions and future work

We have described our flexible, agent based
architecture for workflow management systems. The

1 The job description of an assorter is defined at
http://www.occupationalinfo.org/77/770281010.html

agent-based architecture facilitates the easy integration of
Web Services with the workflow system. We have
demonstrated using an example how a web service can be
used in a diamond processing workflow with limited
effort. The web service agent will be able to connect to
any web service dynamically. We are currently extending
our architecture to accommodate a process model that
executes composite web services. A full version of our
paper can be found in [12].

6. References

[1] Business Process Execution Language for Web Services
(BPEL4WS). http://www.bpelsource.com

[2] Foundation for Intelligent Physical Agents (FIPA).
http://www.fipa.org.

[3] Paul Buhler and Jose M. Vidal. Enacting BPEL4WS
specified workflows with multi-agent systems. In Proceedings
of the Workshop on Web Services and Agent-Based
Engineering, 2004.

[4] Martin Fleurke, Lars Ehrler, and Maryam Purvis. JBees – an
adaptive and distributed framework for workflow systems. In
Workshop on Collaboration Agents: Autonomous Agents for
Collaborative Environments (COLA), Halifax, Canada, pages
69–76, 2003.

[5] Savarimuthu, BTR and Purvis, M. and Fleurke, M.
Monitoring and controlling of a workflow management system.
In Proc. Australasian Workshop on Data Mining and Web
Intelligence (DMWI2004), pages 127–132.

[6] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis
Methods and Practical Use, Volume 1: Basic Concepts. EATCS
Monographs on Theoretical Computer Science. Springer-
Verlag, 1992.

[7] S. Meilin, Y. Guangxin, X. Yong, and W Shangguang.
Workflow Management Systems: A Survey. In Proceedings of
IEEE International Conference on Communication Technology
(ICCT 1998), ISBN 0-7803-5156-9, 1998.

[8] JFern - http://sourceforge.net/projects/jfern/, 2003.

[9] W.M.P van der Aalst and K. van Hee. Workflow
Management: Models, Methods, and Systems. MIT Press, 2002.

[10] Web Service Definition Language, www.w3.org/TR/wsdl

[11] Apache Axis Toolkit. http://ws.apache.org/axis/

[12] Savarimuthu, BTR., Purvis, M.A., Purvis, M.K., and
Cranefield, S., “Agent-Based Integration of Web Services with
Workflow Management Systems”, Information Science
Discussion Paper Series, Number 2005/05, ISSN 1172-6024,
University of Otago, Dunedin, New Zealand (2005).

