
R. Khosla et al. (Eds.): KES 2005, LNAI 3682, pp. 701�707, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Experiences with Pair and Tri Programming
in a Second Level Course

Maryam Purvis, Martin Purvis, Bastin Tony Roy Savarimuthu,
Mark George, and Stephen Cranefield

Department of Information Science, University of Otago
P O Box 56, Dunedin, New Zealand

{tehrany,mpurvis,tonyr,mgeorge,scranefield}
@infoscience.otago.ac.nz

Abstract. In this paper we describe our experiences with multi-programming
(pair and tri programming) in a second level course. The course, �Application
Software Development� is a second year course, which has a heavy emphasis
on java programming in the labs as well as the development of a full-fledged
project. The objective of the course is to build an entire project that comprises
of various software engineering activities that span across the semester. In gen-
eral, we observe that multi-programming improves the students� ability in ana-
lytical thinking and communicating the conceptual ideas. It also raises certain
issues when this approach is adopted in the educational context. In this paper
we discuss some of these issues. Overall, multi-programming experience has
been a rewarding experience for the students in spite of certain problems that
were encountered.

1 Introduction

The concept of collaborative/cooperative learning [3] has been widely researched and
advocated across the literature. The term "collaborative learning" refers to an instruc-
tion method in which students at various performance levels work together in small
groups towards a common goal. The students are responsible for one another's learn-
ing as well as their own. Collaborative learning has proven effective in improving
critical thinking of the students [5]. The concept of tri programming is inspired by
concepts of collaborative learning and the pair programming [1, 8, 9, 10] activity
associated with the Extreme Programming [14]. In tri programming the groups will
have three people assigned to work together at a single computer to create software.
Similar to pair programming, one person types and takes the initiative for the design
of the particular code being developed at that time, while the other two catch minor
errors and maintain a more strategic view of how the code fits into the rest of the
system. The programmers swap roles as often as they like. All the three programmers
should be involved simultaneously in all code development.

The group members will also interact with each other in discussing the design and
implementation issues related to the programs that they are developing. In this proc-
ess, they will reinforce each other�s knowledge and work towards a common under-
standing. They also develop the communication skills that are required for their future
careers.

702 Maryam Purvis et al.

It is believed that both pair and tri programming help both the experienced as well
as novice programmers. The expert benefits by practicing his or her ability in explain-
ing a particular idea. Often during this process the expert may identify certain errors
in his or her own logic. At the same time the novice benefits by getting exposed to
various problem-solving techniques and ideas and also by questioning the reasons
behind certain design and implementation decisions.

2 Background

2.1 Motivation for Multi-programming

The motivations for tri programming are a) To provide more opportunities for interac-
tions, b) To provide anonymous evaluation of team members and c) To lessen the
likelihood of a dominant person taking over the whole work

2.2 Previous Work

Many researchers have been looking into collaborative programming. The term col-
laborative programming has been mostly used in the context of pair programming.
Our work on multi-programming incorporates teams of three as well as teams of two.
Some work has been done on teams comprising of more than two members such as tri
programming [7]. Most of the work on group programming concentrates on an ad-
vanced programming course in which students tend to be more cooperative and ma-
ture, and also it focuses on division of tasks among team members as opposed to si-
multaneous development of a block of code.

The pair programming practice is associated with the Extreme Programming (XP)
methodology. XP promotes a set of practices such as planning game, up-front testing,
pair programming, code re-factoring and having on-site customer and so on [14]. Due
to the success of XP process in certain applications, some researches have attempted
to integrate these basic principles into the educational courses. Some have adopted the
whole process [6] while others have tried a subset such as applying just pair pro-
gramming [5, 11, 12].

The research done by Noble et. al [6], in applying some of the XP principles in
their software engineering courses were reported to be successful. They were able to
shift the focus from a document-centric approach to a more iterative project-planning
and communication-centric approach. Others who have tried primarily the pair pro-
gramming approach in the educational context [11, 12] have reported an improvement
in terms of the quality of the code produced, increases in personal satisfaction and
decreases in student drop-outs, in particular, in introductory courses. In addition, it
has been reported that the students who participated in pair programming performed
as well as students who did solo programming in the final exam [11, 12]. In our ex-
perience, we believe that, when participating in pair programming, the process of
communicating and rationalizing the decisions made during the project development
helps the students in mentally formulating the concepts in a better way and generally
these students do better in their final exam. There are many factors involved in the
success of the pair programming. Thomas et al. [13], report on the selection criteria.
According to Thomas, the pairs with similar abilities and similar personalities tend to

Experiences with Pair and Tri Programming in a Second Level Course 703

work together the best. Other factors are how often the roles of the pair (driver, ob-
server) should be swapped, how often the pairs should be rotated � (new pairs should
be formed), how the work done by the pairs should be evaluated, and so on. In this
paper we attempt to address these issues.

2.3 Class Statistics in 2003 and 2004

This paper concerns with the student data and feedback provided by the students for
the years 2003 and 2004. The sample sizes were 144 and 110 respectively. In 2003
multi-programming (both pair and tri programming) was done and in 2004 pair pro-
gramming was undertaken. The students had the option to go to solo programming if
a problem such as scheduling was negatively impacting their work. In 2003 there
were 29 groups of three, 16 groups of two and 25 solos. In 2004 there were 35 pairs
and 40 solo programmers.

2.4 Evaluation of the Group Work

Each group submitted one copy of the project work. The project work contributes to
10% of the total mark for the paper. 80% of the project mark comes from marking the
quality of the project submitted (this part of the mark is the same for all the group
members); the remaining 20% of the project mark was determined from peer assess-
ment.

2.5 Group Assessment

Assume that the three members in a team are A, B and C. While evaluating a student
(say A) if two team members (B & C) are happy with the performance of the other
team member (A), then A gets 2 points. If B is happy and C is not happy, then A gets
1 point and if both B and C are not happy about A�s performance, then A gets 0
points. The pair programmer�s work was assessed only based on what they handed in.
This is because the lack of anonymity would put the team members on a difficult
position in order to be objective.

3 Issues Related to Multi-programming
In this section, we point out some of the issues that came up while conducting pair
and tri programming practices. Most of the results that have been reported are based
on our observations and casual interactions with the students during the laboratory
work and feedback that we have received from the students throughout our experi-
ment.

3.1 Performance of Multi vs. Solo Programmers

Overall, multi programmers performed at least as well in the projects as the solo pro-
grammers. This has been reported in the literature widely [5, 11, 12]. Table 1 shows
the average marks scored by multi programmers and solo programmers in two differ-
ent phases of the project in 2003. It is observed that multi programmers perform better
than the solo programmers.

704 Maryam Purvis et al.

Table 1. Average marks scored by multi and solo programmers in two different phases of the
project

 Phase I Phase II
Multi programmers 88.16 85.94
Solo programmers 74.82 57.5

3.2 Scheduling

Most students suggested that they had scheduling problems when the group size was
3. It is natural that when the size of the team increases it creates problems in reaching
a common agreement on problem solving methodologies and also in agreeing to a
common schedule. This has also been reported in the XP community [7].

3.3 Formation of Groups Based on Skills

In 2003, the groups were based on the previous performance of the students. The team
was chosen in such a way that it comprised of a good, average and below average
students. In 2004 the groups were based on voluntary pairing. It has been observed
that, though the grouping was arranged based on the skill levels of the students, the
students are not enthusiastic to work with team members that they do not know and
expressed their reservations in the feedback. However, most of them realised the need
for teamwork in real life projects with unknown team members. Still, most students
preferred voluntary team formation over the assignment of team members according
to their skill levels or previous performances.

3.4 Impact of Peer Pressure

Researchers have reported that students develop a positive peer pressure while pro-
gramming with a partner [2, 5]. We also believe that peer pressure plays a construc-
tive role in adhering to the deadlines and fulfilling commitments. Some students have
mentioned that peer pressure forced them to learn better and prepare well ahead of
labs and project meetings. Multi-programming imparts the sense of joint responsibil-
ity among the team members. This results in timely presence in project/lab meetings
and during collaborative work sessions.

3.5 Performance of International Students on Multi-programming

It has been observed [4] that it is always ambiguous to measure the performance of
international students as multi-cultural issues played a major role in their performance
and also their written and communication skills. We have observed that, international
students, especially Asian students had problems while communicating with their
partners in the multi-programming. In a group consisting of only international stu-
dents, the students often discussed their issues in English and the accent played an
important role in the level of understanding between the students. If the group was
composed of students belonging to the same nationality, they tended to discuss their
ideas in their native language. In a group consisting of mixed nationalities (interna-

Experiences with Pair and Tri Programming in a Second Level Course 705

tional as well as native English speakers) the international students as well as the
native English speakers had difficulty in explaining their views clearly to each other.
Some international students felt that this approach resulted in better understanding of
the concepts when their group mates explained it in English and also they considered
this as a chance to improve their communication skills. On the other hand, most of the
native English speakers found it hard to work with the international students, as they
had to explain the students over and again till they understood. They considered this
to be a waste of time.

3.6 Policies for Swapping the Roles in Multi-programming

Most of the students complained about one person being the driver all the time. It is
normal to have totally different personalities in a group. Some students had quoted
that some of their teammates had dominating personalities and their own voices were
never heard within the team. So policies concerning swapping of roles must be devel-
oped.

4 Recommendations to Improve the Process

4.1 Forming Well Balanced Groups/Pairs

To encourage better interaction and cooperation between the team members, the stu-
dents may select their own partners if they choose to, otherwise an effort should be
made to form groups of people with similar skills as well as similar interests (this can
be done by asking students to fill a brief set of questionnaire that identifies the stu-
dents like or dislikes). Similar thoughts have also been expressed by McDowell et.al
[11, 12] and Thomas et.al [13].

4.2 Student Assessment

Firstly, in order to improve the team sprit, the evaluation mechanism should be based
on the quality of the project as opposed to the performance of an individual. This
shifts the focus of students in creating a good quality project and may resolve some of
the personal conflicts for the sake of creating good quality software. Secondly, the
assessment criteria should be as closely related to the training provided in the course
as possible in order to avoid confusion with regard to what is learnt and what is ex-
pected in the course. For example, when pair programming is adopted for the practical
aspect of the course, the practical test should be also based on the pair programming.
There would be other opportunities to evaluate the student understanding of the con-
cepts covered in other course assessment forms, such as final exam and individual lab
work that might be designed for learning the basic techniques and principles associ-
ated with the course. Thirdly, to apply pair programming in the classrooms, some
modification might be needed to the normal process. For example, in the educational
setting, we need to ensure that the students have had adequate opportunities to learn
the required concepts and techniques - in particular, in a course that is taught at the
first or the second year level. These students are still struggling to learn the basic
ideas and need to practice on all aspects of the programming including both coding

706 Maryam Purvis et al.

and code reviewing. In the industrial setting, one assumes that the participants know
the basic principles. So, to address this issue and ensure that the students get adequate
practice in learning the basic programming technique, we propose the following proc-
ess.

For a group of 3 people (assume A, B, C denote students with ascending order of
capability), choose three problem sets (assume X, Y, Z denotes the problems). The
problems have ascending difficulty levels. For the simple problem X, A is the driver
and the rest of the team are observers. For the problem Y with medium difficulty, B
will be the driver and the other team members act as observers. To solve the difficult
problem Z, C plays the role of the driver while the other team members are observers.
In the scenario described above, all the students are engaged, and each get a chance to
play the roles associated with pair programming (drivers and observers). The problem
sets are similar in the basic concepts; they can include some extensions to keep the
more capable students interested while providing enough repetitions for the less able
student. By this process we have introduced enough redundancy and repetition to
ensure that the students have had adequate chance to learn the material. Also, there is
a clear structure for the students to swap roles in order to experience the benefits of
different roles associated with the pair programming.

4.3 Improving Communication Skills Through Swapping Team Members

In order to improve the communications skills and provide better chances for interact-
ing with different types of students, the project can be partitioned into several sub-
tasks. At the end of each task, the students may have the opportunity to swap teams.
This way not only the students get to work with new partners, but they get to experi-
ence how to understand a piece of code written by another group and how to interface
it and maintain it in order to add additional functionalities.

4.4 Motivating Students on Pair Programming

McDowell et. al [11, 12] have discussed the need for motivating students for pair
programming. We agree with their viewpoint that students must be motivated and
enough background information must be provided so that pair programming will be
effective. To prepare and motivate the students for the process associated with the
pair programming and the benefits gained, the students should be initially exposed to
the appropriate literature in this topic and perhaps be given a chance to write a short
document on their understanding of the process. As a part of this process, the students
can get engaged in a simple task and outline some of the ground rules to be followed
as well as reach an agreement on when and how the roles should be swapped, so that
all participants benefit from different aspects of pair and tri programming.

5 Conclusions
As long as there is active participation by all the members of the group, multi-
programming will be fruitful activity. Though it has been observed that most three-
member groups faced scheduling problems, three people can generate a better discus-
sion on rationalizing some of the programming decisions that are made. Most students

Experiences with Pair and Tri Programming in a Second Level Course 707

also felt that voluntary pairing should be preferred over non-voluntary pairing. We
have also presented certain recommendations to improve the multi-programming
method of programming. We believe most students benefit from pair and tri pro-
gramming. Similar to the benefits of code review in the traditional software develop-
ment process, pair programming subjects the project to constant code and design
review. For this reason it has been reported that the quality of the code is generally
improved. In addition, we believe that multi-programming tends to make students
reflect more on the concepts and improves the analytical thinking ability of the stu-
dents. In a way, it helps students to move toward a deeper learning style. It also facili-
tates knowledge sharing among students and improves the communication and inter-
personal skills that are required to work effectively in a team environment. We are
planning to formalize and adopt other XP practices in our courses. We have already
incorporated some aspects of XP testing practice and in the future we will introduce
other practices such as game planning, project iteration, and re-factoring.

References

1. Williams, L., R. R. Kessler, W. Cunningham, and R. Jeffries. "Strengthening the Case for
Pair Programming." IEEE Software 17.4 (July/Aug. 2000): 19-25.

2. Williams, L., Wiebe, E., Yang, K., Ferzli, M., Miller, C., In Support of Pair Programming
in the Introductory Computer Science Course Computer Science Education, 2002.

3. Antil, L., J. Jenkins, S. Wayne, and P. Vadasy. "Cooperative Learning: Prevalence, Con-
ceptualizations, and the Relationship between Research and Practice." American educa-
tional research journal 35, no.3 (1997): 419-454.

4. George, P. G. (1994). The Effectiveness of Cooperative Learning Strategies in Multicul-
tural University Classrooms. J. of Excellence in College Teaching, 5(1), 21-30.

5. Gokhale, A. (1995). Collaborative learning enhances critical thinking. Journal of Technol-
ogy Education, Vol 7, no 1, Fall 1995

6. Noble, J, Marshall, Stuart, Marshall, Stephen, Biddle, R. Less Extreme Programming. ACE
2004: 217-226

7. TriProgramming: www.c2.com/cgi/wiki?TriProgramming, Accessed on 20th Feb, 2005.
8. Williams, Laurie, Robert R. Kessler, Ward Cunningham, and Ron Jeffries, Strengthening

the Case for Pair-Programming, IEEE Software, July/Aug 2000.
9. Williams, Laurie and Kessler, Robert R., All I Really Need to Know about Pair Program-

ming I Learned In Kindergarten, Communications of the ACM, May 2000.
10. Williams, Laurie and Kessler, Robert R. The Effects of Pair-Pressure and Pair-Learning on

Software Engineering Education. Conference of Software Engg. Edu. and Training, 2000.
11. McDowell, Charlie, Linda Werner, Heather Bullock, and Julian Fernald, The Impact of Pair

Programming on Student Performance, Perception, and Persistance, In Proc. of the 25th In-
ternational Conference on Software Engineering (ICSE 2003), pp. 602 - 607, 2003.

12. Charlie McDowell, Brian Hanks, and Linda Werner, Experimenting with Pair Program-
ming in the Classroom, Proceedings of the 8th Annual Conference on Innovation and
Technology in Comp. Sci. Education (ITiCSE 2003), 2003, Thessaloniki, Greece.

13. Thomas, L., M. Ratcliffe, and A. Robertson, Code Warriors and Code-a-Phobes: A Study
in Attitude and Pair Programming", Proceedings of SIGCSE 2003, pages 363-367, 2003.

14. Beck, K. & Fowler, M. (2000), Planning Extreme Programming, Addison-Wesley. Beck,
K. Extreme Programming Explained: Embracing Change. Addison-Wesley, 2000.

	Experiences with Pair and Tri Programming in a Second Level Course
	1 Introduction
	2 Background
	2.1 Motivation for Multi-programming
	2.2 Previous Work
	2.3 Class Statistics in 2003 and 2004
	2.4 Evaluation of the Group Work
	2.5 Group Assessment

	3 Issues Related to Multi-programming
	3.1 Performance of Multi vs. Solo Programmers
	3.2 Scheduling
	3.3 Formation of Groups Based on Skills
	3.4 Impact of Peer Pressure
	3.5 Performance of International Students on Multi-programming
	3.6 Policies for Swapping the Roles in Multi-programming

	4 Recommendations to Improve the Process
	4.1 Forming Well Balanced Groups/Pairs
	4.2 Student Assessment
	4.3 Improving Communication Skills Through Swapping Team Members
	4.4 Motivating Students on Pair Programming

	5 Conclusions
	References

