
A Multi-agent Based Workflow System Embedded with Web Services

Maryam Purvis, Bastin Tony Roy Savarimuthu, Martin Purvis
Department of Information Science, University of Otago, PO Box 56, Dunedin, New Zealand

{tehrany, tonyr, mpurvis}@infoscience.otago.ac.nz

Abstract

The rapid changes in business environment call for
flexible and adaptive workflow systems. In this paper we
describe how we incorporate Web Services as well as
provide an intelligent resource allocation mechanism to
our existing agent-based workflow management system
(WfMS). The extended architecture enhances the
adaptability aspect of our system. In addition to the
process perspective of adaptability it also provides
support for resource and task perspectives. We discuss
how Web Services can be located and the services
provided by them can be invoked. We also discuss how
the agents and Web Services can co-exist in order to
create highly flexible and dynamic WfMS.

Using an example we show how our framework can be
used to achieve adaptability from a process, resource and
task perspectives using both agents and Web Services.

1. Introduction

Workflow management systems (WfMS) [5,15,19] are
increasingly being used to manage business processes
associated with distributed global enterprises. Some of
the benefits of using a WfMS are

• Ability to visualize the overall process and
interdependencies between various tasks.

• Automation of the processes.
• Coordination and collaboration between various

business entities.

Existing, commercially available, workflow
management systems (WMS) do not offer sufficient
flexibility for distributed organizations that will be
participating in the global market. These systems have
rigid, centralised architectures that do not operate across
multiple platforms [20]. Improvements have been made
by employing a distributed network of software agents
that can adapt to changing circumstances [28, 29].

In the past, WfMSs were used in well-defined activities,
such as manufacturing, where the processes tend to be
more established and stable. But in the current climate

WfMS may be used in connection with more fluid
business processes, such as e-commerce, or in processes
involving human interactions, such as the software
development process. In such situations, at times, it is not
always possible to predict in advance all the parameters
that may be important for the overall processes. In
particular some of the reasons for requiring an adaptive
WfMS are as follows [3,4,7]:

• It may not be possible to specify all the process details
associated with a complex process at the outset. The
initial model may represent a high level view of the
process, which includes some of the sub processes.
Gradually some of these sub processes may be refined
as the stakeholders obtain more experience and
knowledge of a particular process.

• Due to changes in the market, a new requirement may
be imposed which can impact the process definition.

• The workflow could use services provided by the
external entities such as the Web Service provided by
banks, stock markets etc.

The workflow system is adaptable in three ways: 1) From
the process perspective in which the process model can be
changed dynamically and 2) from the resource perspective
in which the choosing a particular resource could be done
at run time based on the history data and from 3)
individual task/activity point of view where an appropriate
Web Service can be invoked on the fly.

Adaptability from a process perspective has been
discussed in our previous work [28,29]. In this paper we
discuss how the workflow is adaptable from the resource
perspective and the individual activity point of view,
which involves the incorporation of intelligent mechanism
in selecting a suitable resource dynamically and the
integration of Web Services to the workflow.

2. Background

2.1. Coloured Petri Nets

Coloured Petri nets are used to model workflow
systems, due in part to their sound mathematical
foundation and to the fact that they have been used
extensively for modelling distributed systems [13].

Coloured Petri nets consist of the following basic
elements:

• Tokens, which are typed markers with values - the type

can in our implementation be any Java class.
• Places (circles), which are typed locations that can

contain zero or more tokens.
• Transitions (squares), which represent actions whose

occurrence (firing) can change the number, locations
and value of tokens in one or more of the places
connected to them. Tokens may have guards, which
must evaluate to TRUE in order for a transition to fire.
In a workflow model a transition may represent a task.

• Arcs (arrows) connecting places and transitions. An
arc can have associated inscriptions, which in our
implementation are Java expressions whose evaluation
to token values affects the enabling and firing of
transitions.

Some reasons for preferring Petri net modelling to

other notations in connection with workflow modelling
are [2]:

• They have formal semantics, which make the

execution and simulation of Petri net models
unambiguous. It can be shown that Petri nets can be
used to model workflow primitives identified by the
Workflow Managment Coalition (WfMC) [1]

• Unlike some event-based process modelling notations,
such as dataflow diagrams, Petri nets can model both
states and events.

• There are many analysis techniques associated with
Petri nets, which make it possible to identify 'dangling'
tasks, deadlocks, and safety issues.

Currently, we are using JFern [17] - a CPN-simulator

and enactment engine to design and execute the models.
We have modified the JFern editor to support hierarchical
models, which enables the modeler to start with a coarse
model of the process and gradually refine each of the
subprocesses into a separate Petri net model.

2.2. Agent systems

2.2.1. WfMS using software-agents

Agent systems provide an open, flexible and distributed
framework [8,21,23,25]. In the context of WfMS, agent
technology has been used in different ways [14,20]. In
some cases the agents fulfil particular roles that are
required by different tasks in the workflow. In these cases
the existing workflow is used to structure the coordination
of these agents [12,16]. An example of this approach is
the work by M. Nissen in designing a set of agents to

perform activities associated with the supply chain process
in the area of E-Commerce [16].

In other cases, the agents have been used as part of the
infrastructure associated with the WfMS itself in order to
create an agent-enhanced WfMS [22, 24]. We have used
our agent technology for this latter case. These agents
provide an open system with loosely coupled components,
which provides more flexibility than the traditional
systems. As part of the agent framework, each agent can
be located in a separate host over the Internet, which
enables the distribution of the workflow-related activity
and reduces the problems associated with overloading a
particular system component.

Some researches have combined both of these
approaches [9], where an agent-based WfMS is used in
conjunction with specialized agents that provide
appropriate application-related services.

Our research is focussed on developing an agent-
enhanced WfMS, where the work associated with running
a WfMS has been partitioned among various agents that
are interacting with each other by following standard
agent communication protocols. For example, the model
associated with a business process that is represented with
the Coloured Petri net formalism is executed by a
specially designed agent for this purpose. This framework
provides an environment where new process models
(when they are required) can be dynamically incorporated
into the system and also the process model itself can be
distributed over the net. The distribution of the process
model is important in situations where the processes
associated with a large organization with various
departments (which might be located in different sites) are
modelled, and inter-process interactions are required. In
these cases each site might be running its local process
model that is one component of the overall process model
associated with the organization.

2.2.2. Opal
Opal [18] is a java-based agent platform developed at the
University of Otago since 2000. It meets the standards of
the Foundation for Intelligent Physical Agents (FIPA)
[11] for agent platforms and incorporates a modular
approach to agent development.

In Opal every FIPA ACL-speaking [10] agent consists of
several micro agents. This facilitates the development of
agents, because one can easily add or remove micro
agents to an Opal agent and thereby change the behaviour
of this “macro”-agent.

2.3. Web Services

Web Services are software components available on the
internet, that provide certain services which may be of

general interest such as weather monitoring services,
currency converters etc. These services may be of interest
for some of the tasks associated with a process model. For
example, the process model associated with the travel plan
of the tourist depends upon the environmental factors such
as the weather conditions. The task associated with
finding the weather condition can be provided using a
publicly available Web Service.

2.4. Former approaches for adaptive WfMS

The need for adaptive workflow systems and possible
solutions to these problems have been discussed by
researchers [2, 4, 27, 34]. A few researchers have
provided solutions to some aspects of adaptability [2, 27].
But, only a few researchers have tackled the problem
associated with the running work cases [2]. Our previous
papers [33, 28, 29] addressed this issue for some
scenarios.

Some researchers have integrated agent based workflow
systems with Web Services [26, 27, 31,32]. However
some enhancements can be made to improve these
approaches.

1. In the research done by Paul et.al [31,32], BPEL4WS
has been used as a process model and this model is
converted to Petri net. The problem in this approach as
acknowledged by the authors is that, BPEL4WS does not
support selective routing.

However, in our system the process model is described
using coloured Petri net that can be directly executed.

• Firstly, we do not have the selecting routing
problem.

• Secondly, the conversion mechanism of a
BPEL4WS model to a Petri net model has to be
validated to ensure the structural and behavioural
equivalence associated with the original model.

2. Our system provides a dynamic incorporation of the
process models, which does not seem to be possible in
their system. Their system provides adaptability for a
particular task in the process but not the process model as
a whole.

3. Enhanced architecture of the system

3.1. The architecture
Our system is based on Opal [18] and uses the CPN-
execution tool JFern [17] Our system consists of seven
special opal agents which provide the functionality to
control the workflow. Figure 1 contains these agents and
their relationship to each other.

Figure 1: Architecture of the agent based workflow
system

The manager agent provides all functionality the
workflow manager needs such as creation and deletion of
tasks, roles and process definitions, instantiation of new
process instances and creation of resource agents. The
process agent executes a process instance. Each resource
in the system has its own resource agent. Every resource
in the system gets registered to one of the broker agents
that allocate the resources to the process. The storage
agent manages the persistent data that is needed. The
monitor agent collects all the process specific data and
sends them to the storage agent. The control agent
continuously looks for anomalies to the criteria specified
by the human manager and reports the violations to these
criteria to the manager agent. The manager agent provides
information to the human manager, which can be used for
the feedback mechanism.

3.2. Enhancements to the framework

The enhancements to the framework are two fold. a) The
resources allocated for a particular task is done based on
the history data and b) dynamic discovery of Web
Services for a particular task and connecting to the Web
Service through agents. The dashed region on the above
diagram (Figure 1) indicates the components of the system
that required to be modified. The functionalities of the
resource and resource broker agents had to be modified to
accommodate the above changes.

3.2.1. Intelligent resource allocation
For each case that is being enacted the data pertaining to
the tasks such as the task execution time, waiting time to
obtain a resource, time taken by the resource to execute
the task etc. are stored persistently in distributed databases
using the monitoring agent [30]. Figure 2 shows overall
utilization of the resources and Figure 3 shows the waiting
time of various tasks for similar cases. These are the kind
of information that have been stored persistently and

which is of interest during the process of resource
allocation.

Figure 2: Percentage utilization of resources (resource
instances in x axis and % utilization in y axis)

Our architecture supports the allocation of resources to
tasks depending upon these history data. By examining the
data that has been collected, the resource that performs a
task the best can be obtained. If this resource is available
at that point of time, it is assigned the responsibility of
completing the task. Otherwise the second best available
resource is selected.

Figure 3: Waiting time for various tasks for 3 similar
cases (Tasks in x axis and waiting time in y axis)

3.2.2. Dynamic discovery and invocation of

Web Services
The resources in our workflow system are of three types
or roles. The first kind of resources can perform tasks
such as ‘billing an invoice’. The second kind of resource
can connect to a device such as a printer, scanner or a
PDA. The third kind of resource can connect to a Web
Service and fetch the results.

Our framework supports the dynamic discovery of Web
Services by connecting to a UDDI service and invoking
an appropriate service. This is achieved by the
combination of SOAP, WSDL and UDDI.

3.3 Adaptability
Our framework supports adaptability form process,
resource and task perspectives.

3.3.1 Process Perspective
As was described in the earlier work [29], for each work
case a new process agent is created and an appropriate
CPN model is instantiated. The work case is represented
by a token in the CPN model. While the workflow system
is running there might be a scenario in which requires a
new CPN model (due to change in the business process).
In this case there are several possible actions that can take
place. The choice of these actions depends on the scope of
the change requested and the extent to which it has to be
applied to the existing work cases. In case the change has
to be applied to new work cases waiting in the queue to be
processed, then we can easily instantiate the process agent
with the new or modified model instead of the old model
for these work cases. However, if the proposed change in
the process should be applied to the running instances, it
is necessary to make sure that the change does not violate
the structural and semantic consistency of the model
before we can transfer the state of the running instance to
the new model. To decide whether a running case can be
replaced using a new model, we use an algorithm [33]
inspired by van der Aalst. More details associated with
this process are described in our previous works [28,29].

3.3.2 Resource perspective

The resource adaptability is achieved by the run time
binding of the resource agents to the resource broker agent
and allocation of a particular resource agent to perform a
task dynamically. At any point of time, a resource may
register its availability and the roles it can perform.

3.3.3 Task perspective
The tasks specified in the model, when necessary can
invoke a suitable Web Service. The behaviour of these
services can change over time without requiring any
change to be made to the module that references them.

In the process perspective, the whole model can be
replaced by a new model. Task perspective deals with the
atomic activities specified in the process model such as
‘billing’ task associated with a book-purchasing model.

The adaptability of our system provides a hybrid

architecture which allows the integration of the legacy
systems coupled with Web Services and multi agents.

4. Example

4.1. Simple example using intelligent resource
allocation

To illustrate the functionality of the system, we choose a
simple process of ordering a book. The CPN-model of this
is shown in Figure 4. After an order arrives, the company
has to check if a copy of this book is in the inventory and
whether the credit rating of the customer is satisfactory.
This credit checking activity is available as an external
Web Service, which can be invoked by a resource agent.
If the credit of the customer is below the purchasing
limits, the order is rejected. Otherwise the execution
continues to the next set of tasks. Credit and inventory
checks are done in parallel to speed the process up and the
results are then evaluated. Assuming that the processing of
the request has been approved, the shipping of the book
and the sending of the bill are done in parallel. Finally the
results of shipping and billing activities are archived to be
able to follow up possible complaints.

Process Agent Broker Agent Storage Agent

get resource()

fetch history data of resources()

return history data()

return appropriate resource()

Resource 1 Resource 2

Request for resource availability()

refuse()

Request for resource availability()

accept()

send task information()

return completion status()

Figure 5 showing the allocation of resource to a task
intelligently.

Assume that a new order arrives. The first step is the
creation of a new process agent and getting all task
definitions. Then the process agent process1 starts
executing the work case by putting a job-token in the

place called Start (Figure 4). This activates the transition
Order Entry. According to the task definition, a resource
of the role processor is needed. The process agent has
therefore to ask the resource broker for a resource of the
role processor.

The process agent requests the broker agent to return a
resource that can perform this task. The broker agent first
finds the list of all resources, which can perform the task
from the storage agent. It also finds the resources that are
idle at that time out of this list. Then, depending upon the
history data for that task, it chooses the resource, which
has performed that task in the least amount of time. Figure
5 shows how the resource is allocated depending upon the
history data.

If it cannot allocate a resource it will send a message to
the process agent that it failed to allocate a resource and
the process agent has to decide how to handle this (for
instance ask another resource broker, or wait a certain
time and ask the same broker again).

After the resource executes the task and returns the result
of the task, the Jfern engine gets the information that the
task Order Entry has been successfully executed and
continues executing the CPN-model. This process
continues for the remaining tasks based on the model.

4.2. Demonstration of dynamic discovery and

invocation of Web Services

There are scenarios in a workflow model where certain
services are available in the Internet, which can be
utilized. In our example, the credit of the customer can be
checked using a Web Service. So, the workflow system
has to enable mechanisms by which this can be
accomplished. Our framework supports the discovery of
such Web Services and their invocation.

4.2.1 Dynamic discovery of Web Services

Figure 6 shows how the services are discovered
dynamically by our workflow system. The process agent
contacts the resource broker agent to allocate appropriate
resource. Depending upon the ‘role type’ requested by the
process agent, appropriate agents are instantiated. In this
case an agent capable of connecting to a Web Service is
instantiated. Also, the broker agent connects to the
externally available UDDI services using UDDI4J and
gets a list of services. In our example, to perform the
‘credit check’ task, it gets the Web Services provided by a
published service. In case of multiple services are
available, the system displays all available services and
the human manager can select an appropriate service. The
broker agent returns the instantiated resource agent and

Figure 4: The adapted process definition

the URI that needs to be invoked by the newly created
resource agent so that the Web Service can be accessed.

Process Agent Broker Agent UDDI Server

get resource()

discover a service()

return service providers()

return the resource as well as the service to be invoked()

Figure 6 Dynamic discovery of Web Services

4.2.2 Invocation of Web Services

The process agent sends the URI to the resource agent
and the resource agent contacts the Web Service by
providing appropriate parameters as specified by the
WSDL definition of the service interface. An example of a
WSDL for a credit checking web service is given below.

Figure 7: A sample WSDL code segment for credit
checking service

The WSDL document shown in Figure 7 describes an
operation called checkCredit. In order to obtain the credit
of a particular customer the variable named customerID is
assigned with a string value and this information is sent as
a creditRequest message. After the request is submitted to
the service provider, it processes the request and returns
the result to the variable called creditResult as specified in
the creditResponse message.

The resource agent parses the corresponding WSDL
document using WSDL4J and invokes the Web Service

using appropriate arguments as described above. The
agents use Apache Axis, to invoke the Web Services.

After the Web Service returns the result, the resource
agent returns the result to the process agent. The process
agent then interprets the result and decides where the
token in the Petri net has to be placed, i.e., if the credit is
low, then the work case is rejected or else it proceeds to
the execution of the next task by enabling the Approval
transition. Figure 8 shows the invocation of Web Services.

Process Agent Resource Agent

performTask()

return taskResult()

Web Service

requestService()

return serviceResult()

Figure 8: Invocation of Web Services

5. Conclusion

In this paper we have described the enhanced
architecture of a flexible system, which can be distributed
and can deal with various levels of adaptability from a
process perspective, resource perspective and task
perspective. We have shown how our agent-based system
allocates resources based upon the past data and also how
it can discover and connect to the Web Services
dynamically.

In order to identify and use the externally available
resources more meaningfully, we need to investigate
further on the integration of semantic web in our system.

We also intend to integrate into the currently implemented
framework one of the existing CPN-model analysis tools
so that we can examine the model for certain properties
such as soundness and reachability.

6. Acknowledgments

The authors wish to acknowledge the work of Lars Ehrler
and Martin Fleurke in the implementation of the original
system. The authors wish to thank Marius Nowostawski
for his work in implementing the OPAL and JFern
systems.

7. References

1. The Workflow Reference Model, Document No.
TC00-1003, Issue 1.1.. 1995, Workflow
Management Coalation.

2. Aalst, W.M.P.v.d. Three Good Reasons for
Using a Petri-net-based Workflow Management
System. in International Conference on
Practical Aspects of Knowledge Management
(PAKM'96), Workshop on Adaptive Workflow.
1996. Basel, Switzerland.

3. Aalst, W.M.P.v.d., Exterminating the Dynamic
Change Bug: A Concrete Approach to Support
Workflow Change. Information Systems
Frontiers, 2001. 3(3): p. 297-317.

4. Aalst, W.M.P.v.d., Basten, T., Verbeek, H.M.W.,
Verkoulen, P.A.C., and Voorhoeve., M. Adaptive
Workflow: An Approach Based on Inheritance.
in Proceedings of the IJCAI'99 Workshop on
Intelligent Workflow and Process Management:
The New Frontier for AI in Business. 1999.
Stockholm, Sweden.

5. Aalst, W.M.P.v.d. and Hee, K.v., Workflow
Management: Models, Methods, and Systems.
2002, Cambridge, MA, USA: MIT Press.

6. Aalst, W.M.P.v.d., Hofstede, A.H.M.t.,
Kiepuszewski, B., and Barros., A.P., Workflow
Patterns. 2002, Queensland University of
Technology: Brisbane, Australia.

7. Bandinelli, S., Fuggetta, A., and Ghezzi, C.,
Process Model Evolution in the SPADE
Environment, Technical Report No. 14 ,
ESPRIT-III Project GOODSTEP (6115). IEEE
Transactions on Software Engineering, 1993.
19(12): p. 1128-1144.

8. Bradshaw, J., An Introduction to Software
Agents, in Software Agents, J. Bradshaw, Editor.
1997, MIT Press: Cambridge. p. 3-46.

9. Chen, Q., Hsu, M., Dayal, U., and Griss:, M.L.
Multi-agent cooperation, dynamic workflow and
XML for e-commerce automation. in the
proceedings of the fourth international
conference on Autonomous agents. 2000.
Barcelona, Spain: ACM Press.

10. FIPA, FIPA Communicative Act Library -
Specification. 2002.
http://www.fipa.org/specs/fipa00037/

11. FIPA, http://www.fipa.org.
12. Jennings, N.R., Faratin, P., Norman, T.J.,

O'Brien, P., and Odgers, B., Autonomous Agents
for Business Process Management. Int. Journal
of Applied Artificial Intelligence, 2000. 14(2): p.
145-189.

13. Jensen, K., Coloured Petri Nets - Basic
Concepts, Analysis Methods and Practical Use,
Vol. 1: Basic Concepts. EATCS Monographs on
Theoretical Computer Science. 1992,
Heidelberg, Berlin: Springer-Verlag GmbH. 1-
234.

14. Joeris, G., Decentralized and Flexible Workflow
Enactment Based on Task Coordination Agents,
in Proc. of the 2nd Int'l. Bi-Conference
Workshop on Agent-Oriented Information
Systems (AOIS 2000 @ CAiSE*00). 2000:
Stockholm, Sweden. p. 41-62.

15. Meilin, S., Guangxin, Y., Yong, X., and
Shangguang, W. Workflow Management
Systems: A Survey. in Proceedings of IEEE
International Conference on Communication
Technology. 1998. Beijing, China.

16. Nissen, M.E. Supply Chain Process and Agent
Design for E-Commerce. in 33rd Hawaii
International Conference on System Sciences.
2000. Maui, HI, USA.

17. Nowostawski, M., JFern - Java-based Petri Net
framework. 2003.

18. Purvis, M.K., Cranefield, S.J.S., Nowostawski,
M., and Carter, D., Opal: A Multi-Level
Infrastructure for Agent-Oriented Software
Development. 2002, Department of Information
Science, University of Otago: Dunedin, New
Zealand.

19. Schael, T., Workflow Management Systems for
Process Organisations. Lecture Notes in
Computer Science. Vol. LNCS 1096. 1998,
Berlin, Germany: Springer-Verlag.

20. Shepherdson, J.W., Thompson, S.G., and
Odgers, B. Cross Organisational Workflow Co-
ordinated by Software Agents. in CEUR
Workshop Proceedings No 17. Cross-
Organisational Workflow Management and Co-
ordination. 1999. San Francisco, USA: CEUR.

21. Shoham, Y., An Overview of Agent-Oriented
Programming, in Software Agents, J. Bradshaw,
Editor. 1997, MIT Press: Cambridge. p. 271-290.

22. Stormer, H. AWA - A flexible Agent-Workflow
System. in Workshop on Agent-Based
Approaches to B2B at the Fifth International
Conference on Autonomous Agents (AGENTS
2001). 2001. Montreal, Canada.

23. Sycara, K.P., Multiagent Systems. AI magazine,
1998.

24. Wang, M. and Wang, H. Intelligent Agent
Supported Flexible Workflow Monitoring
System. in Advanced Information Systems
Engineering: 14th International Conference,
CAiSE 2002. 2002. Toronto, Canada: Springer
Verlag GmbH.

25. Wooldridge, M.J., Intelligent Agents, in
Multiagent Systems, G. Weiss, Editor. 1999,
MIT Press: Cambridge. p. 27-77.

26. José M. Vidal, Paul Buhler, and Christian Stahl.
Multiagent systems with workflows. IEEE
Internet Computing, 8(1): 76-82,
January/February 2004.

27. Paul Buhler, José M. Vidal, and Harko
Verhagen. Adaptive workflow = Web Services +
agents. In Proceedings of the International
Conference on Web Services, pages 131-137.
CSREA Press, 2003.

28. Fleurke, M and Ehrler, L, Purvis, M. A. (2003).
“JBees - An Adaptive and Distributed Agent-
based Workflow System”, in Proceedings of the
International Workshop on Collaboration
Agents: Autonomous Agents for Collaborative
Environments (COLA 2003), Halifax, Canada,
October 2003. IEEE/WIC Press. Ghorbani, A.
And Marsh, S., Ed.

29. Ehrler, L., Fleurke, M., Purvis, M. A. and
Savarimuthu, B.T.R., “Agent-Based Workflow
Management Systems(Wfmss) : JBees- A
Distributed and Adaptive WFMS with
Monitoring and Controlling Capabilities”, to be
published in a special issue of the Journal of
Information Systems and e-Business on Agent-
Based Information (2005).

30. Savarimuthu, B.T.R., Purvis, M. A. and Fleurke,
M. (2004), "Monitoring and Controlling of a
Multi-agent Based Workflow System",
Proceedings of the Australasian Workshop on
Data Mining and Web Intelligence (DMWI2004),
Conferences in Research and Practice in
Information Technology, Vol. 32, Australian
Computer Society, Bedford Park, Australia
(2004) 127-132.

31. Paul Buhler and José M. Vidal. Integrating agent
services into BPEL4WS defined workflows. In
Proceedings of the Fourth International
Workshop on Web-Oriented Software
Technologies, 2004.

32. Paul Buhler and José M. Vidal. Enacting
BPEL4WS specified workflows with multiagent
systems. In Proceedings of the Workshop on Web
Services and Agent-Based Engineering, 2004.

33. Martin Fleurke. JBees, an adaptive workflow
management system - an approach based on petri
nets and agents. Master’s thesis, Department of
Computer Science, University of Twente, P.O.
Box 217, 7500 AE Enschede, The Netherlands,
2004.

34. Dr. N.C. Narenda, Adaptive Workflow
Management . An integrated Approach and

System Architecture, Proceedings of the 2000
ACM symposium on Applied computing, March
2000.

View publication statsView publication stats

https://www.researchgate.net/publication/238391886

