
A Distributed Workflow System with
Autonomous Components

Maryam Purvis, Martin Purvis, Azhar Haidar and Bastin Tony Roy Savarimuthu
Information Science Department, University of Otago, Dunedin, New Zealand

{tehrany,mpurvis,tonyr}@infoscience.otago.ac.nz

Abstract. This paper describes the architecture of a distributed workflow
management system in a dynamic environment. The system features
autonomous agent components that can adapt to both structural changes in
business processes and changes in system parameters, such as the number of
available resources. This adaptation could be a permanent adjustment that
should be reflected in all the incoming work cases, or be associated with a
particular instance of a work case. In addition, parts of the system can be
modified by observing the behaviour of the system for possible shortcomings
due to a non-optimal distribution of resources or faulty inter-process
dependencies which could result in bottlenecks. Because of the autonomous
nature of subsystem components, the workflow system can adapt to changes
without the necessity of centralized control. The architecture of the system is
described in the context of a distributed workflow example.

Keywords: dynamic workflow, autonomous components, interaction protocols,
coloured Petri nets, adaptability

1 Introduction

Workflow management systems (WfMS) [1-3] are increasingly being used to manage
business processes associated with distributed global enterprises. Some of the
benefits of using a WfMS are
• ability to visualize the overall process and interdependencies between various tasks,
• automation of the processes, and
• coordination and collaboration between various business entities.
Traditionally, however, most WfMSs have had centralized control architecture along
with a fixed process model specification. The current research trend is in the
direction of (a) more distributed architectures which can reduce potential bottlenecks
with respect to particular system components and (b) more flexible process model
specifications, which can accommodate dynamic and changing requirements that
occur in today’s business environment [4,5].
 It is often desirable to have the capability of modifying the existing process model
due to changing external influences or of dealing with exceptional cases in which the
normal processes many not be appropriate. In the past WfMSs were used in well-
defined activities, such as manufacturing, where the processes tend to be more
established and stable. But in the current climate WfMS may be used in connection
with more fluid business processes, such as e-commerce, or in more complicated
processes involving human interactions, such as the software development process.
In such situations, at times, it is not always possible to predict in advance all
parameters that may be important for the overall processes. In addition, it is often

appropriate for certain groups within a distributed organisation to be autonomous and
not always under centralized control. Consequently it would be helpful if we could
design WfMS systems that could cope with these dynamic requirements and provide
some level of process modification. It is important to make the workflow system
dynamic and adaptable as workflows of multi national companies span across
countries. For example the main workflow might be present in New Zealand and the
sub processes could be distributed in countries like India and Germany.
 One of the benefits of using a WfMS is to be able to streamline processes
associated with an organization and be able to visualize some of the
interdependencies between various tasks or various processes in a larger context. It is
desirable to represent these processes in a formal way that could be used for further
analysis and at the same time have a graphical and intuitive representation. The
coloured Petri net (CPN) notation [6] meets this requirement. In the past, the CPN
formalism has been used successfully to model the dynamic behaviour associated
with particular processes representing various activities of a complex system, such as
business processes. In the context of the WfMS, CPNs have been used to specify the
process model of a WfMS component [2,7]. CPN is used to model processes that
involve, as it is a well-established modelling technique that combines expressiveness,
simplicity and formal semantics. However, in the present work we are extending this
idea so that the various sub-processes associated with a large enterprise could be
distributed on different hosts while at the same time are interconnected with one
another according to the overall process model associated with a given organization.
 An advantage of having a formal representation that is executable is that one can
examine the behaviour of the system according to various what-if-scenarios that may
be considered as a result of potential changes to the process or some of the model
parameters such as the various constraints that might affect the outcome. By
simulating the model for typical scenarios, it is possible to analyse the outcome of the
simulation and fine-tune the specified resources or constraints so that more favourable
results can be achieved; and this is also possible with coloured Petri nets.

2 Architecture of the system

To accommodate this level of adaptability, the system should be flexible and made of
loosely coupled modules. Our workflow system uses JFern [8], a Java-based tool for
the enactment and simulation of coloured Petri nets. We are also using the Opal agent
framework [9], which conforms to the Foundation for Intelligent Physical Agents
(FIPA) specifications [10] and which provides an agent-based infrastructure for the
support of distributed, adaptable computing.
 The system architecture (shown in Figure 1) is based on a framework that was
developed by the NZDIS research group [11]. In this framework various agents are
responsible for performing their tasks by executing a model of their activity specified
with Petri nets. The open and dynamic nature of the agents facilitate the incorporation
of adaptable process models. Each model is associated with a sub-process associated

with the overall workflow.

Process Manager

Process
Model

Process
Engine

Process
Model

Process
Engine

Process
Model

Process
Engine

OUT

IN IN

IN

Travel Agent

Insurance Provider
Agent

Service Provider
Agent

 Figure 1. Architecture of the agent system

Each agent runs an instance of JFern for Petri net protocol enactment. The agents
interact by sending messages to other agents as specified in their protocol model.
When an agent receives a message, the appropriate information is deposited in an In
place in its Petri net, and this may enable transitions to be fired that are associated
with the protocol model. Similarly any message going to another agent is deposited in
the Out place. All these nodes are fused with the out place of the process manager.
The process manager dispatches the messages to the appropriate agents as specified in
the message content.
 An agent can receive a proposal for a new or modified interaction protocol,
associated with its participation in the overall workflow, from another agent by means
of a FIPA-specified propose message. The content of this message contains the
proposed interaction protocol encoded in XML format. The interaction protocol
actually comprises a coloured Petri net and the associated ontology, which describes
the terms used in the model and their relationships. The ontology is represented in
UML, and both the Petri net and the UML-encoded ontology information are encoded

in XML and sent together as the overall interaction protocol. Because the agents are
autonomous, they may not agree to the new proposed protocol and may inform the
proposing agent of their refusal to agree. Under certain circumstances, such as in
loosely-organised confederations of service providers that are distributed across the
Internet, this option of refusing the newly proposed protocol may be appropriate. The
system architecture described here provides support for this kind of semi-autonomous
workflow structure.
 The agent-based architecture also supports the notion of incorporating new agents
appearing on the scene (joining the agent group) and offering new services on the fly.
These new agents will be informed on arrival of current interaction protocols for the
group by means of the same propose message mentioned above.
 The governance of the interaction protocols is handled by one or more ‘manager’
agents which maintain a model repository. At the present stage of technology, such
manager agents are expected to be interfaces to human managers. Thus if it is
determined during the middle of workflow execution that a new model is required, the
manager or workflow designer would have the opportunity to create a new model and
register it with the ‘manager’ agent’s model repository which can then be distributed
to the appropriate agent that may require an alternative protocol.
 A separate workflow designer component can exist on different hosts. The
workflow administrator of a branch of an organisation can design the process
associated with that particular office and send the model and the associated work
cases to a specific agent.
 The system architecture comprises several components including the workflow
engine, workflow modeller, and various services such as an XML to Petri net (in
Java) translator, and generic service provider agents that can locate a resource and
provide a service for a particular task.
 This architecture allows for monitoring of the system based on a set of predefined
conditions such as availability of resources which could be used as a feedback
mechanism for human administrators.

2.1 The Workflow Modeller

This workflow modeller component is used to specify the processes associated with
performing a particular activity. Coloured Petri nets are used to model workflow
systems, due in part to their sound mathematical foundation and to the fact that they
have been used extensively for modelling of distributed systems [12]. Coloured Petri
nets consist of the following basic elements:
tokens which are typed markers with values - the type can be any Java class.
places (circles), which are typed locations that can contain zero or more tokens.
transitions (squares), which represent actions whose occurrence (firing) can

change the number and/or value of tokens in one or more of the places connected
to them. Tokens may have guards which must evaluate to TRUE in order for the
transition to fire. In a workflow model a transition may represent a task.

arcs (arrows) connecting places and transitions. An arc can have associated
inscriptions, which are Java expressions whose evaluation to token values affects
the enabling and firing of transitions.

Some reasons for preferring Petri net modelling in connection with workflow
modelling to other notations are:
They have formal semantics, which make the execution and simulation of Petri net

models unambiguous. It can be shown that Petri nets can be used to model
workflow primitives identified by the Workflow Management Coalition (WfMC)
[13]

Typical process modelling notations, such as dataflow diagrams, are event-based,
but Petri nets can model both states and events.

There are many analysis techniques associated with Petri nets, which make it
possible to identify 'dangling' tasks, deadlocks, and safety issues.

Other standardization protocols do not cater to expressiveness, simplicity and
formal semantics. The comparison of high-level petri nets with other proposed
standardization protocols can be found in [15].

Currently, we are using the Renew [14] petri net simulator to design our models.
These models are then converted to XML which can be used as input to the JFern
engine, which is embedded in our system but at the moment does not have a GUI
interface for CPN design.

3 Example Scenario

In order to show the operational aspect of the system, as well as how it can adapt to
changes, an example scenario is described. In this scenario, various sub-nets
associated with different sub-processes of the system are discussed. This model has
been adapted from a travel agent model example discussed by Van der Aalst [2].

3.1 A distributed process model

In this scenario the interactions involving a customer, a travel agent, a transport ticket
seller (travel service provider) are described. Figure 2 depicts a simplified version of
the interaction protocol for the travel agent. The protocol is initiated when a
customer’s request has been submitted to the travel agent, indicated by the placement
of a token at the In place of the net. The travel agent then searches some external
database (not shown in the diagram) to come up with some possible trip options (the
Prod Opts transition). The result of the search is placed in the Opts place. These
options are then placed in the Out place so that they can be sent back to the customer.
At this point the customer is contacted (the customer interaction is not shown in this
diagram). When the customer responds, the travel agent’s Get Cus Res transition will
fire. Either the customer will select an option for purchasing a ticket (an external
travel service provider will have to be contacted for the purchase of such a ticket) or
the customer will not be satisfied with the options he was sent and will need more

options (Need More Opts). Assuming that the customer does select one of the options
for purchase (as indicated by the value of the token in the Cus Res place), the Res Tick
transition is enabled, causing the travel agent to send a ticket reservation request to a
travel service provider, such as a bus company or sightseeing operation. A copy of
the customer’s ticket reservation request is kept in the Res Sent place for later
consultation. The travel service provider will either send back a notification that a
reservation has been made (enabling the Get Tick Res transition) or send back
notification that there are no tickets available (enabling the Get Rej transition, which
will cause a notification of that fact to be sent back to the customer). If the travel
service provider does return a confirmed ticket reservation, it is matched with the
ticket reservation request stored in the Res Sent place and then deposited in the Tick
Res place. This will, in turn, enable the Send Bill transition, causing a bill to be sent
to the customer for payment. After payment is received, the travel agent will send the
payment to the service provider, get the ticket from the service provider, and then
forward the ticket on to the customer.

Figure 2. Interaction protocol for the travel agent.

In
Get

Request

Get
Cus
Res

Get
Tick
Res

Get
$$

Out

Req

Prod
Opts

Opts

Send
Opts

Cus
Res

Res
Tick

Tick
Res

Send
Bill

$$

Pay for
Tick

Get
Tick

Tick

Res
Sent

Opts
Sent

Bill
Sent

Tick
Paid

Send
Tick

Need
More
Opts

Get
Rej

 Note that information is stored in the Opts Sent, Res Sent, Bill Sent, and Tick
Paid places for matching up with later messages that arrive. This enables the travel
agent to conduct activities with many customers and travel service providers
concurrently.

 Figure 3 shows the interaction protocol1 for the customer. This protocol has a
Start place that has a token placed in it (specifying the customer’s travel interests)
when the customer wants to initiate a conversation with the travel agent. The Send
Request transition causes the request to be placed in the Out place for sending a
message to the travel agent and a copy of the request is stored in the Req Sent place.
Later, the customer expects to receive a set of options for selection from the travel
agent, and these options should match his or her travel request. After an option is
selected, this is placed in the Out place for sending back to the travel agent, and a
copy of the reservation selected is stored in the Res Sent place. Subsequently, the
customer expects to get a bill, pay it, and ultimately get tickets matching what he or
she has paid for.

1At times we use the term protocol to refer to the activities of individual participants and at
other times to the collection of activities of all participants. The context should make clear the
difference.

Figure 3. Interaction protocol for the Customer.

In
Get
Opts

Get Bill

Out

Opts

Select
Opt

Bill

Send
Request

Res
Sent

Start
Send $$

Opt

Send
Res

$$ Sent

Get Prod

Req
Sent

Figure 4 shows the interaction protocol for the travel service provider. The travel
service provider might supply any kind of travel service, such as boat passage,
tramping guides, etc. The travel service provider initially receives a message from the
travel agent indicating that a reservation has been requested for his or her service,
such as a transport ticket. The service provider must then see if the requested
resource (usually a ticket booking) is available. So both the Prep Prod and Send
Reject transitions examine the single token located in the Available Resources place.
The single token in the Available Resources place contains a list of available
resources, and information for the list in this token is maintained by access to an
external database. The Prep Prod transition is enabled if the relevant information (i.e.
what is desired, for example, a bus ticket) on the reservation request token in the Res
place matches up with one of the resources listed on the token in the Available
Resources place. On the other hand, the Send Reject transition is enabled if the
information on the token in the Res place fails to match up with an item listed on the
token in the Available Resources place. In the case where there are tickets available,
the service provider then prepares the product (a ticket, say) and sends the bill back to
the travel agent and keeps a copy of it in the Bill Sent place. When payment is
received later, the service provider will send the product that has been stored in Prod
Ready. In the simplified scenario described here, there is only a single generic
protocol for a travel service provider shown, but there could be many such protocols
that are used for particular service providers. There could also be more complicated
interactions with the customer. In our example, payment is made directly to the travel
agent. But there could be other options available, including having the travel agent
act as a broker, with payment transactions ultimately taking place directly between the
customer and the travel service provider.

3.2 Adaptive workflow process operation

Figure 4. Interaction protocol for the service provider.

In

Get
Res

Get $

Out

Res

Prep
Prod

$$

Send
Bill

Prod
ready

Prod

Send
Prod

Bill
Sent

Available
Resources

Send
Reject

 Consider now an international travel agency with individual travel agents spread
across a global region. The individual agents may be using an interaction protocol
associated with customers and service providers such as we have described in Figures
1-3. These sets of interaction protocols represent the workflow cases for the travel
agents of the agency. Suppose, now, that a health crisis emerges in some regions of
the world, and that the global manager of the travel agency decides to recommend a
new interaction protocol for some of his or her travel agents. The newly proposed
protocol is to require that all ticket transactions must be bundled with a health
insurance policy that is offered by some recommended health insurance agents. This
new interaction protocol is now recommended for those travel agents in parts of the
world that are affected by the health crisis, and the new travel agent protocol is shown
in Figure 5. The entire protocol is sent to all travel agents in the organisation in the
form of an encoded XML expression in the body of a FIPA propose message. Those
travel agents that are dealing with customers in affected areas would be urged to

Figure 5. New interaction protocol for travel agent involving two coupled service
providers (for tickets and insurance).

InGet
Request

Get
Cus
Res Get

Tick
Res

Get
$$

Out

Req

Prod
Opts

Opts

Send
Opts

Cus
Res

Reserve
Ticket

Tick
Res

Send
Bill

$ for
Tick

Pay
Tick

Get
Tick

TickTick
Res
sent

Opts
sent

Bill
Sent

Tick
Paid

Send
Tick+Ins

Res
Ins

Get
Ins
Res

Tick+Ins
Res

Ins
Res
Sent
(+TR)

$ for
Ins

Pay
Ins

Get
Ins

Ins
Paid

Ins

Need
More
Opts

Get
rej

adopt the new protocol. For a resilient and adaptive global organisation, this kind of
autonomy may be essential for success in a competitive environment.
 In the new protocol, there is now a ticket selling travel service provider and an
insurance service provider. For this new scenario, we assume that the customer and
both service provider protocols remain as shown in Figures 2 and 3, respectively.
Both of the service provider agents use the interaction protocol depicted in Figure 3:
they prepare a product when requested by the travel agent, and that product is
delivered to the travel agent when payment is received. The protocol for the travel
agent is modified, though, as shown in Figure 4. When the initial request comes in
from the customer, the early stages of interaction are as before in Figure 1. However
after the ticket reservation request is confirmed by receipt of a message from the
ticket selling service provider, the travel agent proceeds to request purchase of
insurance from an insurance provider (a message to the insurance provider is prepared
in connection with the Res Ins transaction, and a token for the message is placed in
the Out place). Information about the insurance request and the confirmed ticket
reservation is stored in the Ins Res Sent (+TR) place. Later when the bill is sent to the
customer and payment is received, the travel agent arranges to pay both the ticket
selling service provider and the insurance provider. After the travel agent receives
authorisation from both the ticket selling agent (in the form of tickets) and the
insurance provider (possibly just some authorisation number) these vouchers are
bundled together and forwarded on to the customer.

4 Discussion and Future Work

 The ability to design and update interaction protocols that, together, represent
workflow scenarios enables an organisation of semi-autonomous entities or agents to
respond and adapt to changing conditions in a distributed environment. For
illustrative purposes, we have described a distributed example involving travel agents.
This is a significant example, because the conditions and available service providers
are constantly changing in the travel and tourism industry, and it can be difficult to
maintain an organised sense of workflow activities under these conditions. As new
types of service providers become available, there can be new types of interaction
protocols that are appropriate for those service providers, and all the agents that
interact with them would need to be informed about those interactions protocols.
 Another application domain can be in the area of distributed software
development, where many independent, autonomous software developers are working
together on a large, possibly open-source, development project. Integration, testing,
and acceptance activities can be adapted to deal with changing scheduling
requirements, customer-imposed constraints, or preferences among the distributed
collection of team members.
 This work is also applicable in those areas that are less human-dominated and in
which electronic agents are performing most of the work. In these environments, it is
essential to be able to monitor and coordinate the activities of groups of autonomous

agents. Facilities such as those we are developing can offer more choice in the
organisation of distributed enterprises, because they can provide coordination
facilities while, at the same time, allowing individual entities to retain more
autonomy.
 The following enhancements to the existing system are planned for future work
in this research:.
Provide more explicit facilities for resource management so that

conventional workflow models can be incorporated.
Provide a direct interface to one of the exiting analysis tools so that process

models can be analysed on the spot. The resulting analysis can lead to improved
system performance.

Improve the monitoring capability so that various performance statistics and
throughput information is available graphically.

Improve the visualization of linked and hierarchical models.
We are in the process of extending the proposed prototype and evaluating

various process model scenarios. In particular we are examining the integration
of the web services as discussed by Paul et al [16].

The authors would like to acknowledge the technical support and consultation
provided by Mariusz Nowostawski and Peter Hwang of the University of Otago.

References

1. Schael, T.: Workflow Management Systems for Process Organisations.

Springer-Verlag. (1998)
2. Van der Aalst, W., Van Hee, K., Schmidt, J. W.: Workflow Management:

Models, Methods, and Systems. MIT Press. (2002)
3. Meilin, S., Guangxin, Y. , Yong, X. , Shangguang, W.: Workflow

Management Systems: A Survey. In: Proceedings of IEEE Intl. Conf. On
Communication Technology, Beijing, (1998)

4. Borghoff, U.M. , Bottoni, P. , Mussio, P., Pareschi, R.: Reflective Agents for
Adaptive Workflows. In: Proc. 2nd Conf. on the Practical Application of
Intelligent Agents and Multi_Agent Technology (PAAM’97), London, U.K.,
(1997) 405-420

5. Stormer, H.:A Flexible Agent-Based Workflow Systems. In: Workshop on
Agent-Based Approaches to B2B, Fifth International Conference on Autonomous
Agents, Montreal, Canada (2001)

6. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, Vol. 1: Basic Concepts. Springer-Verlag, Berlin (1992).

7. van der Aalst, W.M.P.: The application of Petri nets to workflow
management. In: The Journal of Circuits, Systems and Computers vol. (1998)
8(1), 21-66.

8. Nowostawski, M.: JFern, version 1.2.1,
 http://sourceforge.net/project/showfiles.php?group_id=16338 (2002).
9. Purvis, M., Cranefield, S., Nowostawski, M., and Carter, D.: Opal: A Multi-Level

Infrastructure for Agent-Oriented Software Development. In: Information Science
Discussion Paper Series, No. 2002/01, ISSN 1172-6024, University of Otago, Dunedin,
New Zealand.

10. FIPA. Foundation For Intelligent Physical Agents (FIPA). FIPA 2001 specifications,
http://www.fipa.org/specifications/ (2003)

11. Purvis, M. K., Huang, P., Purvis, M. A., Cranefield, S. J., and Schievink, M.:
Interaction Protocols for a Network of Environmental Problem Solver. In:
Proceedings of the 2002 iEMSs International Meeting: Integrated Assessment
and Decision Support (iEMSs 2002), Volume 3, Andrea E. Rizzoli and Anthony
J. Jakeman (eds.), The International Environmental Modelling and Software
Society, Lugano, Switzerland (2002) 318-323

12. van der Aalst, W.M.P.: Three good reasons for using a Petri-net-based
workflow management system. In: Navathe, S., Wakayama, T. (eds.): Proc of
International Working Conference on Information and Process Integration in
Enterprises (IPIC'96),. Massachusetts Institute of Technology, Cambridge,
Massachusetts, (1996) 179-201.

13. Workflow Management Coalition: The Workflow Reference Model,
Document No. TC00-1003, Issue 1.1. (1995)

14. Theoretical Foundations Group and Distributed Systems Group of the Department of
Informatics, University of Hamburg. Renew – The Reference Net Workshop, Release 1.2,
(2000)

15. van der Aalst, W.M.P.: Don’t go with the flow: Web Services composition
standards exposed, Jan/Feb 2003 issue of IEEE intelligent systems.

16. Paul Buhler and José M. Vidal. Enacting BPEL4WS specified workflows
with multiagent systems. In Proceedings of the Workshop on Web Services and
Agent-Based Engineering, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/221524213

