
Teaching and Using PSP in a Software Engineering course:
An Experience Report

K Venkatasubramanian, S Bastin Tony Roy, Muralikanth V Dasari
Computer Science and Information Systems group

Birla Institute of Technology and Science
Pilani, Rajasthan, India - 333031

{kvenkat,tony,dasari}@bits-pilani.ac.in

Abstract
In this paper, we describe our experiences with teaching
software process improvement using some elements of
the PSP as part of a traditional software engineering
course. The goals were to help students develop good
software development habits early, and to encourage them
to see software development as a systematic discipline
rather than a trial-and-error activity. We find that PSP is a
viable and useful approach and has quantifiable, positive
impact. Problems in teaching PSP are in keeping students
motivated and keeping them focused on general ideas
instead of details. Problems in using a personal software
process are maintaining enough self-discipline and
finding proper tool support.

Keywords: software process improvement, process
measurement, quality metrics

1 Introduction
The Personal Software Process (PSP) framework is an
approach suggested by Watts Humphrey in 1995[1]. It
describes a methodology that leads an individual software
engineer towards disciplined, well-defined work with
continuous self-improvement. The PSP ideas are
independent of programming language, application
domain, and team organization. PSP shows engineers
how to manage the quality of their products and how to
make commitments they can meet. It also provides them
with the data to justify their plans. PSP has been shown to
substantially improve the estimating and planning ability
of engineers while significantly reducing the defects in
their products.

1.1 Context of the PSP Exercises
The PSP was offered as part of a traditional one-semester
software engineering course for a class of 36 graduate
students at BITS, Pilani. This course is the first exposure
to software engineering for most students. We have
introduced the PSP exercises in this course, for teaching
software process improvement.

This paper appeared at the Software Engineering Education and
Training Annual Conference 2001 (SEETAC2001), Chennai,
India. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

The students had good programming experience in
languages like C, C++ and Java. However, they did not
have any exposure to a defined and measured software
process. The focus of the current work is on gaining
experience with teaching and using the PSP where the
students were required to work through the PSP exercises
on a defined schedule and in a structured course
environment.

During the semester, over a period of twelve weeks,
about ten lectures were given to explain the methods and
mathematical models to be used in doing the PSP
exercises. Students recorded data during the development
of these programs, and submitted their reports along with
their programs. To provide an incentive for doing the
PSP, the exercises constituted 25% of the total weightage
of the course.

 In addition to the PSP, the students were also required to
complete a term project covering various aspects of a
typical software development life cycle. This term project
was a team effort.

In the following sections, we describe our experiences
with our first attempt at teaching and using PSP in a
traditional software engineering course for graduate
students.

2 Quantitative results
This section presents some of the results obtained in our
first experience in teaching PSP. These results confirm
those published by others and add information about the
perception of the students about the PSP course.

2.1 Student performance
The overall performance of the class is shown in the
figures below. Figures 1 and 2 show the minimum,
maximum and average lines of code and total
development time respectively for each program for the
entire class.

MIN, MAX and AVG of Lines of Code

0

200

400

1 2 3 4 5 6 7 8 9 10

Program Number

Min Max Avg

Figure 1: Minimum, maximum and average Lines of
Code (LOC)

 MIN , MAX and AVG of Total Development
Time

0

500

1 2 3 4 5 6 7 8 9 10

Program Number

Ti
m

e
in

M

in
ut

es

Min Max Avg

Figure 2: Minimum, maximum and average of total
development time.

Figure 3 shows the defect densities over the 10 exercises
of the course. We see that the total number of defects
found during development per 1000 lines of code
(KLOC) decreases significantly over time. Figure 4
shows that the productivity (LOC per hour of
development time) is not adversely affected by the PSP
during the course, despite the large amount of
bookkeeping effort involved.

Defects per KLOC (Compile + Test)

0
50

100
150

1 2 3 4 5 6 7 8 9 10

Program Number

D
ef

ec
ts

 /
K

LO
C

Min Max Avg

Figure 3: Defects per KLOC (Compile + Test)

Average Productivity

0

50

100

Program Number

Avg 33. 22. 33. 60. 44. 61. 50. 38. 53. 37.

1 2 3 4 5 6 7 8 9 10

Figure 4: Average productivity

It was observed that students do not only learn to produce
software with less defects, they also learn to estimate
more precisely how long it will take them to deliver the
product. The deviation in size estimation accuracy and
time estimation accuracy over the ten exercises are shown
in Figures 5 and 6 respectively.

Size estimation accuracy

-0.10

0.00

0.10

0.20

0.30

Program Number

(E
st

im
at

ed
 -

A
ct

ua
l)L

O
C

/E

st
im

at
ed

 L
O

C

Average 0.01 0.18 0.22 0.05 0.08 -0.0 0.01 0.05 -0.0 0.02

1 2 3 4 5 6 7 8 9 10

Figure 5: Size estimation accuracy

Time estimation accuracy

-0.50

0.00

0.50

Program Number

Average -0.15 -0.16 -0.42 0.15 -0.11 -0.04 -0.29 -0.09 -0.12 0.01

1 2 3 4 5 6 7 8 9 10

Figure 6: Time estimation accuracy
As we can see, average estimation errors are reduced
significantly over the PSP course. Further, the defect
removal rate of the students improved significantly over
the 10 programs, as shown in Figure 7.

D efect R emo val R ate

0.00

1.00

2.00

P r ogr a m Numbe r

Average 0.49 0.43 0.41 0.50 0.66 0.57 0.23 1.56 1.15 1.16

1 2 3 4 5 6 7 8 9 10

Figure 7: Defect removal rate

2.2 Course evaluation by the students
During and after taking the course, we had regular
interactions with the students and obtained their feedback.
More than half of the class found the PSP experience to
be quite helpful in understanding software process
improvement. They felt they really learned about the way
they tend to work, and could see significant improvement
in their overall productivity.

Although, most of them did not like filling out all the
forms and collecting all the data, they grudgingly
admitted that it was worthwhile to do that, especially the
time logs and the defect logs.

There were several others who were hardly motivated and
felt they would never really want to use PSP unless they
were in an environment where it is expected of them.

3 Learning and teaching PSP
We learned important lessons in two areas: keeping the
students motivated and keeping them focused on the
important things.

3.1 Motivation
Most of the students were only moderately motivated to
do the PSP exercises. Subjectively, the amount of
bookkeeping effort required for PSP planning appears
unreasonable for two reasons. First, the fraction of
bookkeeping effort in the PSP course is indeed large,
because the exercises are rather small. Second, students
with little team project experience do not recognize why
good planning is important at all.

3.2 Focus
The second significant problem in teaching PSP is that
students tend to concentrate too much on the fine details
of the individual methods suggested. For instance they
concentrate so much on the questions like which values
of the regression parameter for time estimation are
acceptable ones, that they do not understand why
regression is used at all and which alternative methods
are used when and why.

As some of the details are indeed complicated, we find it
very important to keep the students' focus on the general
ideas of PSP and on the general ideas of how to
implement them instead of on the details of the specific
implementation suggested in the course. This requires the
teacher to emphasize the rationale of each method over its

actual content, and to emphasize that all methods taught
in the course are only suggestions and must be optimized
based on personal data after the course. Students that do
not see the big picture will probably not be able to make
improvements on their personal software process after the
course.

4 Using a personal software process
Although a personal software process is very useful in
principle, its use is hampered by a number of severe
problems. We discuss each of the most important ones in
a separate section.

4.1 Lack of discipline
The single most important lesson we learned on using
PSP is this: Properly using and improving a personal
software process requires a lot of discipline; more than
most students appear to be able to come up with.

Often, introducing appropriate PSP support tools will
help reduce the problem. For some students, this might
still not be sufficient. The key to successful PSP use for
them might be to drop most of the standard PSP elements
and use only what appears most useful for them. For
instance, most of the students did not use planning,
because in an academic setting this is rarely practical and
often superfluous.

4.2 Tool support
As mentioned above, the bookkeeping required for
measurements, gathering historical data, planning, and
process improvement data analysis is a tedious work.
Manual bookkeeping costs time, detracts from the main
task, and provokes errors. Therefore, for sustained use of
a personal software process, support tools are required.

5 Conclusions
Our experiences with teaching and using PSP in a
traditional software engineering course can be
summarized as follows:

��PSP is a good methodology for teaching the
discipline required for software engineering.
Using a personal software process, the students
can appreciate the importance of a defined and
measured software process. They can greatly
improve their personal productivity and quality
of their work. Use of appropriate tools will
enhance the effectiveness of the PSP
significantly.

��However, for most students it is not easy to

actually get PSP to work for them, mostly
because of problems with self-discipline and
motivation.

��When teaching PSP, it is very important to keep

the students' focus on the general ideas and to
educate them to judge for themselves what is
useful for them and what is not. Thus they can
be encouraged to adapt the PSP to suit their
requirements.

6 References

[1] Watts S. Humphrey. A Discipline for Software
Engineering. SEI Series in Software Engineering.
Addison Wesley, 1995.

[2] Watts S. Humphrey.Using A Defined and Measured
Personal Software Process. IEEE Software, 13(3):77-88,
May 1996.

[3] Watts S. Humphrey. Introduction to the Personal
Software Process. SEI Series in Software Engineering.
Addison Wesley, 1997.

[4] J. Kamatar and W. Hayes. An Experience Report on
the Personal Software Process. IEEE Software,
November/December 2000, pp 85-89

